精英家教网 > 初中数学 > 题目详情

【题目】ABC中,∠C=90°,AC=BC.作射线AP,过点BBDAP于点D,连接CD.

(1)当射线AP位于图1所示的位置时

①根据题意补全图形;

②求证:AD+BD=CD.

(2)当射线AP绕点A由图1的位置顺时针旋转至∠BAC的内部,如图2,直接写出此时AD,BD,CD三条线段之间的数量关系为   

【答案】(1)①见解析②见解析;(2)结论:AD﹣BD= CD.理由见解析

【解析】

(1)①根据要求补全图形即可;
AB是中点O,连接OD、OC,作CEADE,CFDBF.四只要证明边形DECF是正方形,可得DE=DF,CD= DE

RtCAERtCBF,推出AE=BF,可得AB+DB=DE+AE+DF-BF=2DE,
(2)结论:AD-BD= CD,AB的中点O,连接OC,OD.作CMCDADM.只要证明MCD是等腰直角三角形,ACM≌△BCD,、即可解决问题;

(1)解:①补全图的图形如图所示;

②证明:取AB是中点O,连接OD、OC,作CEADE,CFDBF.

∵∠ACB=ADB=90°,

OC=OD=AB,

A、D、B、C四点共圆,

∴∠ADB=ABC=45°,

∴∠ADC=CDB,

CEADE,CFDBF,

CE=CF,

易证四边形DECF是正方形,

DE=DF,CD=DE,

AC=BC,CE=CF,

RtCAERtCBF,

AE=BF,

AB+DB=DE+AE+DF﹣BF=2DE,

又∵DE=CD,

AB+BD=CD.

(2)结论:AD﹣BD=CD.

理由:取AB的中点O,连接OC,OD.作CMCDADM.

∵∠ACB=ADB=90°,OA=OB,

OC=OD=AB,

A、C、D、B四点共圆,(设ADBCO,先证明AOC∽△BOD,再证明AOB∽△COD即可)

∴∠ADC=ABC=45°,

∴△MCD是等腰直角三角形,

CM=CD,

∵∠MCD=ACB=90°,

∴∠ACM=BCD,CA=CB,

∴△ACM≌△BCD,

AM=BD,

AD﹣BD=AD=AM=DM=CD.

故答案为:AD﹣BD=CD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】天封塔历史悠久,是宁波著名的文化古迹.如图,从位于天封塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°,若此观测点离地面的高度为51米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,求A,B之间的距离(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为(
A.2
B.8
C.2
D.2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用两种方法证明三角形的外角和等于360°”.

已知:如图BAECBFACDABC的三个外角.

求证:∠BAECBFACD=360°.

证法1:________________________________________________________________,

∴∠BAE1+CBF2+ACD3=180°×3=540°,

∴∠BAECBFACD=540°-(1+2+3).

______________,

∴∠BAECBFACD=540°-180°=360°.

请把证法1补充完整并用不同的方法完成证法2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,点A、B的坐标分别是(0,3)、(﹣4,0),

(1)将△AOB绕点A逆时针旋转90°得到△AEF,点O,B对应点分别是E,F,请在图中画出△AEF,并写出E、F的坐标;
(2)以O点为位似中心,将△AEF作位似变换且缩小为原来的 ,在网格内画出一个符合条件的△A1E1F1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为a,动点P从点A出发,沿折线A→B→D→C→A的路径运动,回到点A时运动停止.设点P运动的路程长为x,AP长为y,则y关于x的函数图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).
请你根据图中提供的信息,解答下列问题:
(1)计算被抽取的天数;
(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;
(3)请估计该市这一年(365天)达到“优”和“良”的总天数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.
(1)若AE=CF; ①求证:AF=BE,并求∠APB的度数;
②若AE=2,试求APAF的值;
(2)若AF=BE,当点E从点A运动到点C时,试求点P经过的路径长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y1=﹣2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2 . 若y1≠y2 , 取y1、y2中的较小值记为M;若y1=y2 , 记M=y1=y2 . 例如:当x=1时,y1=0,y2=4,y1<y2 , 此时M=0.下列判断:
①当x>0时,y1>y2
②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在;
④使得M=1的x值是﹣
其中正确的是( )

A.①②
B.①④
C.②③
D.③④

查看答案和解析>>

同步练习册答案