精英家教网 > 初中数学 > 题目详情

【题目】如图,在边长为1的小正方形组成的网格中,ABC的三个顶点均在格点上,请按要求完成下列各题:

(1)画线段ADBC且使AD=BC,连接CD;

(2)线段AC的长为_______,CD的长为______,AD的长为________;

(3)四边形ABCD的面积为________.

【答案】(1)作图见解析;(2);5;(3)10.

【解析】1)利用网格特点画出AD即可;

(2)利用勾股定理计算AC、CD、AD的长;

(3)先利用勾股定理的逆定理证明ACD为直角三角形,然后利用三角形的面积公式计算四边形ABCD的面积.

(1)如图所示:

(2)AC=

CD=

AD=

(3)(22+(2=52

∴△ACD是直角三角形,

S四边形ABCD=4×6-×2×1-×4×3-×2×1-×3×4=10.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AC,BC分别与⊙O相交于点D,E,连接DE,现给出两个命题: ①若AC=AB,则DE=CE;
②若∠C=45°,记△CDE的面积为S1 , 四边形DABE的面积为S2 , 则S1=S2
那么(

A.①是真命题②是假命题
B.①是假命题②是真命题
C.①是假命题②是假命题
D.①是真命题②是真命题

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知 试说明BECF

完善下面的解答过程并填写理由或数学式

已知

AE (  )

(  )

已知

(  )

DCAB(  )

(  )

已知

(  )

BECF(  ) .

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOB=90°,以O为顶点、OB为一边画∠BOC,然后再分别画出∠AOC与∠BOC的平分线OM、ON.

(1)在图1中,射线OC在∠AOB的内部.

①若锐角∠BOC=30°,则∠MON= °;

②若锐角∠BOC=n°,则∠MON= °.

(2)在图2中,射线OC在∠AOB的外部,且∠BOC为任意锐角,求∠MON的度数.

(3)在(2)中,BOC为任意锐角改为BOC为任意钝角”,其余条件不变,(图3),求∠MON的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=CD,点E、F分别在边BC、CD上,且BE=DF=AD,联结DE,联结AF、BF分别与DE交于点G、P.
(1)求证:AB=BF;
(2)如果BE=2EC,求证:DG=GE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:△ABC和△ADE都是等腰直角三角形,∠ABC=∠ADE=90°,点M是CE的中点,连接BM.

(1)如图①,点D在AB上,连接DM,并延长DM交BC于点N,可探究得出BD与BM的数量关系为______________

(2)如图②,点D不在AB上,(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某班计划购买篮球和排球若干个,买4个篮球和3个排球需要410元;买2个篮球和5个排球需要310元.

(1)篮球和排球单价各是多少元?

(2)若两种球共买30个,费用不超过1700元,篮球最多可以买多少个?

(3)如果购买这两种球刚好用去520元,问有哪几种购买方案?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为原点,A,B为数轴上两点,AB=15,且OA:OB=2

(1)A,B对应的数分别为      

(2)点A,B分别以2个单位/秒和5个单位/秒的速度相向而行,则几秒后A,B相距1个单位长度?

(3)点AB以(2)中的速度同时向右运动,点P从原点O4个单位秒的速度向右运动,是否存在常数m,使得3AP+2PB﹣mOP为定值?若存在,请求出m值以及这个定值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案