精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,AC,BC分别与⊙O相交于点D,E,连接DE,现给出两个命题: ①若AC=AB,则DE=CE;
②若∠C=45°,记△CDE的面积为S1 , 四边形DABE的面积为S2 , 则S1=S2
那么(

A.①是真命题②是假命题
B.①是假命题②是真命题
C.①是假命题②是假命题
D.①是真命题②是真命题

【答案】D
【解析】解:∵AC=AB, ∴∠C=∠B,
∵四边形ABED内接于⊙O,
∴∠B=∠CDE,
∴∠C=∠CDE,
∴DE=CE;①正确;
连接AE,

∵AB是⊙O的直径,
∴∠AEC=90°,又∠C=45°,
∴AC= CE,
∵四边形ABED内接于⊙O,
∴∠B=∠CDE,∠CAB=∠CED,
∴△CDE∽△CBA,
=( 2=
∴S1=S2 , ②正确,
故选:D.
【考点精析】解答此题的关键在于理解命题与定理的相关知识,掌握我们把题设、结论正好相反的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题;经过证明被确认正确的命题叫做定理.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间t(t为整数,单位:天)的部分对应值如下表所示,网上商店的日销售量y2(百件)与时间t(t为整数,单位:天)的部分对应值如图所示.

时间t(天)

0

5

10

15

20

25

30

日销售量
y1(百件)

0

25

40

45

40

25

0


(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;
(2)求y2与t的函数关系式,并写出自变量t的取值范围;
(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中菱形ABCD的顶点Ay轴上且点A坐标为(0,4),BCx轴正半轴上CB点右侧反比例函数x>0)的图象分别交边ADCDEF连结BF已知BC=kAE=CFS四边形ABFD=20,k= _________

[Failed to download image : http://192.168.0.10:8086/QBM/2019/1/17/2120855162306560/2123559773659136/STEM/85e8312ee4314e6b84d61ad733d78d14.png]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧 于点P,Q,且点P,Q在AB异侧,连接OP.
(1)求证:AP=BQ;
(2)当BQ=4 时,求 的长(结果保留π);
(3)若△APO的外心在扇形COD的内部,求OC的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂按用户的月需求量x(件)完成一种产品的生产,其中x>0,每件的售价为18万元,每件的成本y(万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需求量x(件)成反比,经市场调研发现,月需求量x与月份n(n为整数,1≤n≤12),符合关系式x=2n2﹣2kn+9(k+3)(k为常数),且得到了表中的数据.

月份n(月)

1

2

成本y(万元/件)

11

12

需求量x(件/月)

120

100


(1)求y与x满足的关系式,请说明一件产品的利润能否是12万元;
(2)求k,并推断是否存在某个月既无盈利也不亏损;
(3)在这一年12个月中,若第m个月和第(m+1)个月的利润相差最大,求m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BD平分∠ABCA=2C

1)若∠C=38°,则∠ABD=      

2)求证:BC=AB+AD

3)求证:BC2=AB2+ABAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】5个边长为1的正方形按照如图所示方式摆放,O1,O2,O3,O4,O5是正方形对角线的交点,那么阴影部分面积之和等于________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,矩形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标示为(10,0),点B的坐标为(10,8) .

(1)直接写出点C的坐标为:C( ____ ,_____);

(2)已知直线AC与双曲线y= (m≠0)在第一象限内有一点交点Q(5,n),

①求mn的值;

②若动点PA点出发,沿折线AO→OC→CB的路径以每秒2个单位长度的速度运动,到达B处停止,APQ的面积为S,当t取何值时,S=10.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为1的小正方形组成的网格中,ABC的三个顶点均在格点上,请按要求完成下列各题:

(1)画线段ADBC且使AD=BC,连接CD;

(2)线段AC的长为_______,CD的长为______,AD的长为________;

(3)四边形ABCD的面积为________.

查看答案和解析>>

同步练习册答案