【题目】已知,矩形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标示为(10,0),点B的坐标为(10,8) .
(1)直接写出点C的坐标为:C( ____ ,_____);
(2)已知直线AC与双曲线y= (m≠0)在第一象限内有一点交点Q为(5,n),
①求m及n的值;
②若动点P从A点出发,沿折线AO→OC→CB的路径以每秒2个单位长度的速度运动,到达B处停止,△APQ的面积为S,当t取何值时,S=10.
【答案】(1)B(0,8) (2) t=2.5s,7s,11.5s
【解析】
(1)根据矩形的对边相等的性质直接写出点C的坐标;
(2)①设直线AC的解析式为y=kx+b(k≠0).将A(10,0)、C(0,8)两点代入其中,即利用待定系数法求一次函数解析式;然后利用一次函数图象上点的坐标特征,将点Q代入函数关系式求得n值;最后将Q点代入双曲线的解析式,求得m值;
②分类讨论:分当0≤t≤5时,当5<t≤9时,当9<t≤14时三种情况讨论求解.
(1)B(10,8) ,
(2)① 设直线AC 函数表达式为( ),
∵ 图像经过A(10,0).C(0,8),
∴ , 解得,
∴ ,
当时,.
∵ Q(5,4)在上
∴ ,
∴ ;
②㈠当0<t≤5时,
AP=2t ,
∴ ,
∴4t=10,
∴t=2.5 ,
㈡当5<t≤9时,
OP=2t-10,CP=18-2t,
∴ ,
∴ ,
∴ ,
∴t=7 ;
㈢当9<t≤14时,
OP=2t-18,BP=28-2t,
∴ ,
∴ ,
∴t=11.5 ,
综上所述:当t=2.5s,7s,11.5s时,△APQ的面积是10.
科目:初中数学 来源: 题型:
【题目】小明同学在一次社会实践活动中,通过对某种蔬菜在1月份至7月份的市场行情进行统计分析后得出如下规律: ①该蔬菜的销售价P(单位:元/千克)与时间x(单位:月份)满足关系:P=9﹣x
②该蔬菜的平均成本y(单位:元/千克)与时间x(单位:月份)满足二次函数关系y=ax2+bx+10,已知4月份的平均成本为2元/千克,6月份的平均成本为1元/千克.
(1)求该二次函数的解析式;
(2)请运用小明统计的结论,求出该蔬菜在第几月份的平均利润L(单位:元/千克)最大?最大平均利润是多少?(注:平均利润=销售价﹣平均成本)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,AC,BC分别与⊙O相交于点D,E,连接DE,现给出两个命题: ①若AC=AB,则DE=CE;
②若∠C=45°,记△CDE的面积为S1 , 四边形DABE的面积为S2 , 则S1=S2 ,
那么( )
A.①是真命题②是假命题
B.①是假命题②是真命题
C.①是假命题②是假命题
D.①是真命题②是真命题
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,E、F分别为BC、CD的中点,连接AE,BF交于点G,将△BCF沿BF对折,得到△BPF,延长FP交BA延长线于点Q,下列结论正确的个数是( )
①AE=BF;②AE⊥BF;③sin∠BQP= ;④S四边形ECFG=2S△BGE .
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、M、B、N、C在同一直线上顺次排列,点M是线段AB的中点,点N是线段MC的中点,点N在点B的右边.
(1)填空:图中共有线段 条;
(2)若AB=6,MC=7,求线段BN的长;
(3)若AB=a,MC=7,将线段BN的长用含a的代数式表示出来.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知, , ,试说明:BE∥CF.
完善下面的解答过程,并填写理由或数学式:
解:∵ (已知)
∴AE∥ ( )
∴( )
∵(已知)
∴ ( )
∴DC∥AB( )
∴( )
即
∵(已知)
∴( )
即
∴BE∥CF( ) .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB=90°,以O为顶点、OB为一边画∠BOC,然后再分别画出∠AOC与∠BOC的平分线OM、ON.
(1)在图1中,射线OC在∠AOB的内部.
①若锐角∠BOC=30°,则∠MON= °;
②若锐角∠BOC=n°,则∠MON= °.
(2)在图2中,射线OC在∠AOB的外部,且∠BOC为任意锐角,求∠MON的度数.
(3)在(2)中,“∠BOC为任意锐角”改为“∠BOC为任意钝角”,其余条件不变,(图3),求∠MON的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某班计划购买篮球和排球若干个,买4个篮球和3个排球需要410元;买2个篮球和5个排球需要310元.
(1)篮球和排球单价各是多少元?
(2)若两种球共买30个,费用不超过1700元,篮球最多可以买多少个?
(3)如果购买这两种球刚好用去520元,问有哪几种购买方案?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com