精英家教网 > 初中数学 > 题目详情

【题目】如图,点A、M、B、N、C在同一直线上顺次排列,点M是线段AB的中点,点N是线段MC的中点,点N在点B的右边.

(1)填空:图中共有线段   条;

(2)AB=6,MC=7,求线段BN的长;

(3)AB=a,MC=7,将线段BN的长用含a的代数式表示出来.

【答案】(1)10;(2)0.5;(3)3.5﹣a.

【解析】

(1)根据线段的定义按规律确定线段的条数:1+2+3+4;

(2)先根据线段中点的定义得:BMNC的长,由线段的和差可得BN的长;

(3)同理可得BN的长.

解:(1)图中共有线段1+2+3+4=10条;

故答案为:10

2)∵AB=6,点M是线段AB的中点,

MC=7,点N是线段MC的中点,

NC=MC=3.5BC=MCBM=73=4

BN=BCNC=43.5=0.5

3)∵AB=a,点M是线段AB的中点,

BM=AB=a

MC=7,点N是线段MC的中点,

NC=MC=3.5BC=MCBM=7a

BN=BCNC=7a3.5=3.5a

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】AB两地相距2400米,甲、乙两人分别从AB两地同时出发相向而行,乙的速度是甲的2倍,已知乙到达A15分钟后甲到达B地.

(1)求甲每分钟走多少米?

(2)两人出发多少分钟后恰好相距480米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,BD平分∠ABCA=2C

1)若∠C=38°,则∠ABD=      

2)求证:BC=AB+AD

3)求证:BC2=AB2+ABAC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,DABC的边AB上一点,CEAB,DEAC于点F,若FA=FC.

(1)求证:四边形ADCE是平行四边形;

(2)AEEC,EF=EC=1,求四边形ADCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,矩形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标示为(10,0),点B的坐标为(10,8) .

(1)直接写出点C的坐标为:C( ____ ,_____);

(2)已知直线AC与双曲线y= (m≠0)在第一象限内有一点交点Q(5,n),

①求mn的值;

②若动点PA点出发,沿折线AO→OC→CB的路径以每秒2个单位长度的速度运动,到达B处停止,APQ的面积为S,当t取何值时,S=10.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】11·湖州)(本小题10分)

如图,已知EF分别是□ABCD的边BCAD上的点,且BE=DF

求证:四边形AECF是平行四边形;

BC=10∠BAC=90°,且四边形AECF是菱形,求BE的长。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某旅客携带x kg的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李重量x kg的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李重量x kg的对应关系

(1) 如果旅客选择托运,求可携带的免费行李的最大重量为多少kg

(2) 如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量x kg之间的函数关系式

(3) 某旅客携带25kg的行李,设托运m kg行李(10≤m<24,m为正整数),剩下的行李选择快递.当m为何值时,总费用y的值最小?并求出其最小值是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列材料:

小明遇到这样一个问题:已知:在ABC中,AB,BC,AC三边的长分别为,求ABC的面积.

小明是这样解决问题的:如图1所示,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点ABC(即ABC三个顶点都在小正方形的顶点处),从而借助网格就能计算出ABC的面积他把这种解决问题的方法称为构图法.

请回答:

(1)①图1ABC的面积为________;

②图1中过O点画一条线段MN,使MN=2AB,且M、N在格点上.

(2)图2是一个6×6的正方形网格(每个小正方形的边长为1).利用构图法在图2中画出三边长分别为、2的格点DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠BAC=90°,ADBC,垂足为D,则下面的结论中正确的个数为(  )

ABAC互相垂直;

ADAC互相垂直;

③点CAB的垂线段是线段AB;

④线段AB的长度是点BAC的距离;

⑤线段ABB点到AC的距离.

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

同步练习册答案