精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC中,BC=6EF分别是ABAC的中点,动点P在射线EF上,BPCE于点D,∠CBP的平分线交CE于点Q,当CQ=QE时,EPBP的值为( ).

A.6B.9C.12D.18

【答案】A

【解析】

延长BQ交射线EFM,根据三角形的中位线平行于第三边可得EFBC,根据两直线平行,内错角相等可得∠M=∠CBM,再根据角平分线的定义可得∠PBM=∠CBM,从而得到∠M=∠PBM,根据等角对等边可得BPPM,求出EPBPEM,再证明MEQBCQ全等,利用全等三角形对应边相等求解即可.

解:如图,延长BQ交射线EFM
EF分别是ABAC的中点,
EFBC
∴∠M=∠CBM
BQ是∠CBP的平分线,
∴∠PBM=∠CBM
∴∠M=∠PBM
BPPM
EPBPEPPMEM
CQ=QE,∠M=∠CBM,∠MQE=∠BQC

MEQBCQAAS),
EMBC6,即EPBP6
故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD中,EBC中点连接AE,DF⊥AE于点F,连接CF,FG⊥CFAD于点G,下列结论:①CF=CD;②GAD中点;③△DCF∽△AGF;④,其中结论正确的个数有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在3×3正方形方格中,有3个小正方形涂成了黑色,所形成的图案如图所示,图中每块小正方形除颜色外完全相同.

1)一个小球在这个正方形方格上自由滚动,那么小球停在黑色小正方形的概率是多少?

2)现将方格内空白的小正方形(ABCDEF)中任取2个涂黑,得到新图案,请用列表或画树状图的方法求新图案是中心对称图形的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1(x0)的图象上,点B与点A关于原点O对称,一次函数y2mx+n的图象经过点B.

(1)a2,点C(42)在函数y1y2的图象上.分别求函数y1y2的表达式.

(2)如图,设函数y1y2的图象相交于点C,点C的横坐标为3a,△ABC的面积为16,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】关于x的一元二次方程x2+2k1x+k20有两个不等实根x1x2

1)求实数k的取值范围;

2)若方程两实根x1x2满足x1+x2+x1x210,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=mx2-16mx+48m(m0)x轴交于AB两点(B在点A左侧),与y轴交于点C,点D是抛物线上的一个动点,且位于第四象限,连接ODBDACAD,延长ADy轴于点E.

(1)若△OAC为等腰直角三角形,求m的值.

(2)若对任意m0CE两点总关于原点对称,求点D的坐标(用含m的式子表示).

(3)当点D运动到某一位置时,恰好使得∠ODB=OAD,且点D为线段AE的中点,此时对于该抛物线上任意一点P(x0y0)总有n≥4my0212y0-50成立,求实数n的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】绿色生态农场生产并销售某种有机产品,假设生产出的产品能全部售出.如图,线段EF、折线ABCD分别表示该有机产品每千克的销售价y1(元)、生产成本y2(元)与产量x(kg)之间的函数关系.

(1)求该产品销售价y1(元)与产量x(kg)之间的函数关系式;

(2)直接写出生产成本y2(元)与产量x(kg)之间的函数关系式;

(3)当产量为多少时,这种产品获得的利润最大?最大利润为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形的各边上分别选取点,使得,如果,四边形的最大面积是( .

A.1350B.1300

C.1250D.1200

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“我要上春晚”进入决赛阶段,最终将有甲、乙、丙、丁4名选手进行决赛的终极较量,决赛分3期进行,每期比赛淘汰1名选手,最终留下的歌手即为冠军.假设每位选手被淘汰的可能性都相等.

1)甲在第1期比赛中被淘汰的概率为    

2)用树状图法或表格法求甲在第2期被淘汰的概率.

查看答案和解析>>

同步练习册答案