【题目】平面直角坐标系xOy中,横坐标为a的点A在反比例函数y1=(x>0)的图象上,点B与点A关于原点O对称,一次函数y2=mx+n的图象经过点B.
(1)设a=2,点C(4,2)在函数y1,y2的图象上.分别求函数y1,y2的表达式.
(2)如图,设函数y1,y2的图象相交于点C,点C的横坐标为3a,△ABC的面积为16,求k的值.
【答案】(1)y1=,y2=x﹣2;(2)k=6.
【解析】
(1)将点C(4,2)代入y1=,求出k的值,得到函数y1的表达式;把x=a=2代入y1=,求出点A坐标,根据A和点A'关于原点对称,得到点A'的坐标,将点A'和点B的坐标代入y2=mx+n,利用待定系数法求出函数y2的表达式;
(2)由反比例函数图象上点的坐标特征可得点A坐标,根据A和点B关于原点对称,得到点B(﹣a,﹣).又点B在y2=mx+n的图象上,那么点B(﹣a,﹣am+n).解方程即可得到结论.
解:(1)∵点C(4,2)在函数y1=(x>0)的图象上,
∴k=4×2=8,
∴函数y1的表达式为y1=.
∵点A在y1=的图象上,
∴x=a=2,y=4,
∴点A(2,4).
∵A和点B关于原点对称,
∴点B的坐标为(﹣2,﹣4).
∵一次函数y2=mx+n的图象经过点A'和点B,
∴,
解之,得:,
∴函数y2的表达式为y2=x﹣2;
(2)∵点A的横坐标为a,
∴点A(a,).
∵A和点B关于原点对称,
∴点B的坐标为(﹣a,﹣).
∵点B在y2=mx+n的图象上,
∴点B的坐标为(﹣a,﹣am+n).
∴﹣=﹣am+n,
a2m=an+k①.
∵点C的横坐标为3a,
∴点C(3a,3am+n)或(3a,),
∴3am+n=,即9a2m+3an=k②
由①②得:a2m=,an=﹣.
过点A作AD⊥x轴,交BC于点D,则点D(a,am+n),
∴AD=﹣am﹣n.
∵S△ABc=AD(xc﹣xb)=4a(﹣am﹣n)=16,
∴k﹣a2m﹣an=8,
∴k﹣﹣(﹣)=8,
∴k=6.
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点A在以BC为直径的半圆内.仅用 (不能使用圆规)分别按下列要求画图(保留画图痕迹).
(1)请在图中画出BA边上的高CD;
(2)请在图中画出弦DE,使得DE∥BC.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】教科书中这样写道:“我们把多项式及叫做完全平方式”,如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项使式子中出现完全平方式,再减去这个项,使整个式子的值不变这种方法叫做配方法.配方法是一种重要的解决问题的数学方法,不仅可以将一个看似不能分解的多项式分解因式,还能解决一些与非负数有关的问题或求化数式最大值.最小值等.
例如:分解因式
;例如求代数式的最小值..可知当时,有最小值,最小值是,根据阅读材料用配方法解决下列问题:
(1)分解因式: _____
(2)当为何值时,多项式有最小值,并求出这个最小值.
(3)当为何值时.多项式有最小值并求出这个最小值
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC=13cm,BC=10cm,M、N分别是AB、AC的中点,D、E在BC上,且DE=5cm,连结DN、ME交于H,则△HDE的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0; ②b2-4ac<0 ; ③2a+b>0 ;④a+b+c>0,其中正确的个数( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BC=6,E,F分别是AB,AC的中点,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于点Q,当CQ=QE时,EP+BP的值为( ).
A.6B.9C.12D.18
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在小水池旁有一盏路灯,已知支架AB的长是0.8m,A端到地面的距离AC是4m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C、E、D在同一直线上),求小水池的宽DE.(结果精确到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图正方形ABCD的边长为2,点E,F,G,H分别在AD,AB,BC,CD上,且EA=FB=GC=HD,分别将△AEF,△BFG,△CGH,△DHE沿EF,FG,GH,HE翻折,得四边形MNKP,设AE=x(0<x<1),S四边形MNKP=y,则y关于x的函数图象大致为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com