分析 (1)作CH⊥y轴于D,如图1,易得OA=3,OB=1根据等腰直角三角形的性质得BA=BC,∠ABC=90°,再利用等角的余角相等得到∠CBH=∠BAO,则可根据“AAS”证明△ABO≌△BCH,得到OB=CH=1,OA=BH=3,所以C(-1,4);
(2)与(1)一样的方法可证明△ABO≌△BCD,得到OB=CD,OA=BD,易得OA=CD+OD;
(3)如图3,CF和AB的延长线相交于点D,先证明△ABE≌△CBD得到AE=CD,再利用对称性质得CF=DF,所以CF=$\frac{1}{2}$AE.
解答
解:(1)作CH⊥y轴于D,如图1,
∵点A的坐标是(-3,0),点B的坐标是(0,1),
∴OA=3,OB=1,
∵△ABC是等腰直角三角形,
∴BA=BC,∠ABC=90°,
∴∠ABO+∠CBH=90°,
∵∠ABO+∠BAO=90°,
∴∠CBH=∠BAO,
在△ABO和△BCH中
$\left\{\begin{array}{l}{∠AOB=∠BHC}\\{∠BAO=∠CBH}\\{AB=BC}\end{array}\right.$,
∴△ABO≌△BCH,
∴OB=CH=1,OA=BH=3,
∴OH=OB+BH=1+3=4,
∴C(-1,4);
(2)OA=CD+OD.理由如下:如图2,
∵△ABC是等腰直角三角形,
∴BA=BC,∠ABC=90°,
∴∠ABO+∠CBD=90°,
∵∠ABO+∠BAO=90°,
∴∠CBD=∠BAO,
在△ABO和△BCD中![]()
$\left\{\begin{array}{l}{∠AOB=∠BDC}\\{∠BAO=∠CBD}\\{AB=BC}\end{array}\right.$,
∴△ABO≌△BCD,
∴OB=CD,OA=BD,
而BD=OB+OD=CD+OD,
∴OA=CD+OD;
(3)CF=$\frac{1}{2}$AE.理由如下:
如图3,CF和AB的延长线相交于点D,
∴∠CBD=90°,
∵CF⊥x,
∴∠BCD+∠D=90°,
而∠DAF+∠D=90°,
∴∠BCD=∠DAF,
在△ABE和△CBD中
$\left\{\begin{array}{l}{∠ABE=∠CBD}\\{∠BAE=∠BCD}\\{AB=CB}\end{array}\right.$
∴△ABE≌△CBD,
∴AE=CD,
∵x轴平分∠BAC,CF⊥x轴,
∴CF=DF,
∴CF=$\frac{1}{2}$CD=$\frac{1}{2}$AE.
点评 本题考查了全等三角形的判定与性质:全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.也考查了坐标与图形性质和等腰直角三角形的性质.本题的关键是利用等腰直角三角形的性质添加辅助线构建全等三角形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1000(1+x)2=3640 | B. | 1000(x2+1)=3640 | ||
| C. | 1000+1000x+1000x2=3640 | D. | 1000(1+x)+1000(1+x)2=2640 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 30° | B. | 45° | C. | 50° | D. | 60° |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com