【题目】如图1,P(m,n)是抛物线y=-1上任意一点,l是过点(0,-2)且与x轴平行的直线,过点P作直线PH⊥l,垂足为H.
【探究】
(1)填空:当m=0时,OP= ,PH= ;当m=4时,OP= ,PH= ;
【证明】
(2)对任意m,n,猜想OP与PH的大小关系,并证明你的猜想.
【应用】
(3)如图2,已知线段AB=6,端点A,B在抛物线y=-1上滑动,求A,B两点到直线l的距离之和的最小值.
【答案】(1)OP=1,PH=1;OP=5,PH=5.(2)OP=PH.证明见解析.(3)6.
【解析】
试题(1)m记为P点的横坐标.m=0时,直接代入x=0,得P(0,-1),则OP,PH长易知.当m=4时,直接代入x=4,得P(4,3),OP可有勾股定理求得,PH=yP-(-2).
(2)猜想OP=PH.证明时因为P为所有满足二次函数y=-1的点,一般可设(m,-1).类似(1)利用勾股定理和PH=yP-(-2)可求出OP与PH,比较即得结论.
(3)考虑(2)结论,即函数y=-1的点到原点的距离等于其到l的距离.要求A、B两点到l距离的和,即A、B两点到原点的和,若AB不过点O,则OA+OB>AB=6,若AB过点O,则OA+OB=AB=6,所以OA+OB≥6,即A、B两点到l距离的和≥6,进而最小值即为6.
试题解析:(1)解:OP=1,PH=1;OP=5,PH=5.
如图1,记PH与x轴交点为Q,
当m=0时,P(0,-1).此时OP=1,PH=1.
当m=4时,P(4,3).此时PQ=3,OQ=4,
∴OP==5,PH=yP-(-2)=3-(-2)=5.
(2)猜想:OP=PH.
证明:过点P作PQ⊥x轴于Q,
∵P在二次函数y=-1上,
∴设P(m,-1),则PQ=|-1|,OQ=|m|,
∵△OPQ为直角三角形,
∴OP=,
PH=yP-(-2)=(-1)-(-2)=,
∴OP=PH.
(3)解:如图2,连接OA,OB,过点A作AC⊥l于C,过点B作BD⊥l于D,此时AC即为A点到l的距离,BD即为B点到l的距离.
①当AB不过O点时,连接OA,OB,
在△OAB中,OA+OB>AB=6,
由上述结论得:AC=OA,BD=OB,
∴AC+BD>6;
②当AB过O点时,AC+BD=OA+OB=AB=6,
所以AC+BD的最小值为6,
即A,B两点到直线l的距离之和的最小值为6.
科目:初中数学 来源: 题型:
【题目】(本题满分8分) 2011年5月上旬,无锡市共有35000余名学生参加中考体育测试,为了了解九年级男生立定跳远的成绩,从某校随机抽取了50名男生的测试成绩,根
据测试评分标准,将他们的得分按优秀、良好、及格、不及格(分别用A、B、C、D
表示)四个等级进行统计,并绘制成如图所示的扇形图和统计表:
请你根据以上图表提供的信息,解答下列问题:
【1】(1) m= ,n= ,x= ,y= ;
【2】(2)在扇形图中,C等级所对应的圆心角是 度;
【3】(3)如果该校九年级共有500名男生参加了立定跳远测试,那么请你估计这些男生成绩等级达到优秀和良好的共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,数轴上的三点A、B、C分别表示有理数a、b、c,且|a|>|c|>|b|.
(1)化简|a+c|﹣2|c﹣b|;
(2)若b的倒数是它本身,且AB:BO:OC=6:2:3,求(1)中代数式的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30 km/h,受影响区域的半径为200 km,B市位于点P的北偏东75°方向上,距离点P 320 km处.本次台风是否会影响B市?若影响,求出这次台风影响B市的时间;若不影响,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把数1,3,6,10,15,21,...称为“三角形数”;把1,4,9,25,...称为“正方形数”.同样可以把1,5,12,22,...,等数称为“五边形数”.
将三角形、正方形、五边形都整齐的由左到右填在所示表格里:
(1)按照规律,表格中a=_______________,b=_________________,c=________________________
(2)观察表中规律,第n个“正方形数”是_________________;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是 ______________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:中,是的角平分线,是的边上的高,过点做,交直线于点.
如图1,若,则___ ____;
若中的,则__ ____;(用表示)
如图2,中的结论还成立吗?若成立,说明理由;若不成立,请求出.(用表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com