【题目】如图,点B、C、D都在半径为4的⊙O上,过点C作AC∥BD交OB的延长线于点A,连接CD,已知∠CDB=∠OBD=30°.
(1)求证:AC是⊙O的切线;
(2)求弦BD的长.
【答案】
(1)证明:连接OC,OC交BD于E,
∵∠CDB=30°,
∴∠COB=2∠CDB=60°,
∵∠CDB=∠OBD,
∴CD∥AB,
又∵AC∥BD,
∴四边形ABDC为平行四边形,
∴∠A=∠D=30°,
∴∠OCA=180°﹣∠A﹣∠COB=90°,即OC⊥AC,
又∵OC是⊙O的半径,
∴AC是⊙O的切线
(2)解:由(1)知,OC⊥AC.
∵AC∥BD,
∴OC⊥BD,
∴BE=DE,
∵在直角△BEO中,∠OBD=30°,OB=4,
∴BE=OBcos30°=2 ,
∴BD=2BE=4
【解析】(1)根据圆周角的性质求得∠COB=2∠CDB=60°,然后证明四边形ABDC为平行四边形,从而证得∠A=∠D=30°,根据三角形的内角和定理证得∠OCA=180°﹣∠A﹣∠COB=90°,即OC⊥AC,从而证得AC是⊙O的切线;(2)根据平行线的性质得出∠OBD=30°,∠BEO=90°,然后通过直角三角函数即可求得BE,根据垂径定理从而求得BD的长.
科目:初中数学 来源: 题型:
【题目】如图,直线 与双曲线 交于点A.将直线 向右平移6个单位后,与双曲线 交于点B,与x轴交于点C,若 ,则k的值为( )
A.12
B.14
C.18
D.24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象如图(虚线部分为对称轴),给出以下5个结论:①x≤1时,y随x的增大而增大;②abc>0;③b<a+c;④4a+2b+c>0;⑤3a﹣b<0,其中正确的结论有(填上所有正确结论的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子水平放置在离B(树底)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=3.2米,观察者目高CD=1.6米,求树AB的高度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,斜边AB=5厘米,BC=a厘米,AC=b厘米,a>b,且a、b是方程x2﹣(m﹣1)x+m+4=0的两根,Rt△ABC的面积为平方厘米.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com