精英家教网 > 初中数学 > 题目详情

【题目】如图,已知一次函数y1=k1x+b的图象与x轴、y轴分别交于A、B两点,与反比例函数的图象分别交于C、D两点,点D(2,﹣3),点B是线段AD的中点.

(1)求一次函数y1=k1x+b与反比例函数的解析式;

(2)求COD的面积;

(3)直接写出y1y2时自变量x的取值范围.

【答案】(1)y1=﹣x﹣y2=-(2)(3)当x﹣4或0x2时,y1y2

【解析】

试题分析:(1)把点D的坐标代入y2=利用待定系数法即可求得反比例函数的解析式,作DEx轴于E,根据题意求得A的坐标,然后利用待定系数法求得一次函数的解析式;

(2)联立方程求得C的坐标,然后根据即可求得COD的面积;

(3)根据图象即可求得.

试题解析:(1)点D(2,﹣3)在反比例函数y2=的图象上,

k2=2×(﹣3)=﹣6,

y2=-

作DEx轴于E,

D(2,﹣3),点B是线段AD的中点,

A(﹣2,0),

A(﹣2,0),D(2,﹣3)在y1=k1x+b的图象上,

解得k1=﹣,b=﹣

y1=﹣x﹣,

(2)由

解得

C(﹣4,),

=×+×2×3=

(3)当x﹣4或0x2时,y1y2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】将正面分别写着数字1,2,3的三张卡片(注:这三张卡片的形状、大小、质地,颜色等其他方面完全相同,若背面上放在桌面上,这三张卡片看上去无任何差别)洗匀后,背面向上放在桌面上,从中先随机抽取一张卡片,记该卡片上的数字为x,再把剩下的两张卡片洗匀后,背面向上放在桌面上,再从这两张卡片中随机抽取一张卡片,记该卡片上的数字为y.

(1)用列表法或树状图法(树状图也称树形图)中的一种方法,写出(x,y)所有可能出现的结果.

(2)求取出的两张卡片上的数字之和为偶数的概率P.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某中学为了解学生对新闻、体育、娱乐、动画四类电视节目的喜爱情况,进行了统计调查随机调查了某班所有同学最喜欢的节目每名学生必选且只能选择四类节目中的一类并将调查结果绘成如下不完整的统计图根据两图提供的信息,回答下列问题:

最喜欢娱乐类节目的有______人,图中______;

请补全条形统计图;

根据抽样调查结果,若该校有1800名学生,请你估计该校有多少名学生最喜欢娱乐类节目;

在全班同学中,有甲、乙、丙、丁等同学最喜欢体育类节目,班主任打算从甲、乙、丙、丁4名同学中选取2人参加学校组织的体育知识竞赛,请用列表法或树状图求同时选中甲、乙两同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(10分)如图,一次函数与反比例函数的图象交于A(1,4),B(4,n)两点.

(1)求反比例函数的解析式;

(2)求一次函数的解析式;

(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,中,,若动点从点开始,按的路径运动,且速度为每秒,设出发的时间为.

1)出发2秒后,求的周长.

2)问为何值时,为等腰三角形?

3)另有一点,从点开始,按的路径运动,且速度为每秒,若两点同时出发,当中有一点到达终点时,另一点也停止运动.为何值时,直线的周长分成的两部分?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工艺品厂生产一种汽车装饰品,每件生产成本为20元,销售价格在30元至80元之间(含30元和80元),销售过程中的管理、仓储、运输等各种费用(不含生产成本)总计50万元,其销售量y(万个)与销售价格(元/个)的函数关系如图所示.

(1)当30x60时,求y与x的函数关系式;

(2)求出该厂生产销售这种产品的纯利润w(万元)与销售价格x(元/个)的函数关系式;

(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两栋居民楼之间的距离CD=30米,楼ACBD均为10层,每层楼高3米.

(1)上午某时刻,太阳光线GB与水平面的夹角为30°,此刻B楼的影子落在A楼的第几层?

(2)当太阳光线与水平面的夹角为多少度时,B楼的影子刚好落在A楼的底部.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,矩形OABC的顶点A、C分别在x轴和y轴的正半轴上,反比例函数y= 在第一象限的图象分别交矩形OABC的边AB、BC边点于E、F,已知BE=2AE,四边形的OEBF的面积等于12.

(1)求k的值;

(2)若射线OE对应的函数关系式是y=,求线段EF的长;

(3)在(2)的条件下,连结AC,试证明:EF∥AC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为奖励学习之星,准备在某商店购买AB两种文具作为奖品,已知一件A种文具的价格比一件B种文具的价格便宜5元,且用600元买A种文具的件数是用400元买B种文具的件数的2倍.

1)求一件A种文具的价格;

2)根据需要,该校准备在该商店购买AB两种文具共150件.

①求购买AB两种文具所需经费W与购买A种文具的件数a之间的函数关系式;

②若购买A种文具的件数不多于B种文具件数的2倍,且计划经费不超过2750元,求有几种购买方案,并找出经费最少的方案,及最少需要多少元?

查看答案和解析>>

同步练习册答案