【题目】(1)如图1,等腰三角形纸片,AB=AC,∠BAC=30°,按图2将纸片沿DE折叠,使得点A与点B重合,此时∠DBC= ;
(2)在(1)的条件下,将△DEB沿直线BD折叠,点E恰好落在线段DC上的点E′处,如图3,此时∠E′BC= ;
(3)若另取一张等腰三角形纸片ABC,AB=AC,沿直线DE折叠(点D,E分别为折痕与直线AC,AB的交点),使得点A与点B重合,再将所得图形沿直线BD折叠,使得E落在点E′的位置,直线BE′与直线AC交于点M.设∠BAC=m°(m<90°)画出折叠后的图形,并直接写出对应的∠MBC的大小.(用含m的代数式表示)
【答案】(1)(2)(3)答案不唯一,具体见解析
【解析】
(1)根据∠DBC=∠ABC-∠DBE计算即可;
(2)根据∠E′BC=∠DBC-∠DBE′计算即可;
(3)根据各图分类讨论即可,时,;时,点与点重合;时,;时,点与点重合;时,;时,点与点重合,,不存在点;时,.
(1)∵∠ABC=30°,AB=AC,
∴∠ABC=∠ACB=75°,
∵△ADE折叠至△BDE,∴∠DBE=∠A=30°,
∴∠DBC=∠ABC-∠DBE=45°.
所以答案为45°.
(2)∵△DBE折叠至△DBE′,
∴∠DB E′=∠DBE=30°,
∴∠E′BC=∠DBC-∠DBE′=15°.
所以答案为15°.
(3)如图,
时,;
如图,
时,点与点重合;
如图,
时,;
如图,
时,点与点重合;
如图,
时,;
如图,
时,点与点重合,,不存在点;
如图,
时,.
科目:初中数学 来源: 题型:
【题目】如图,DB∥AC,且DB=AC,E是AC的中点.
(1)求证:BC=DE;
(2)连接AD、BE,若∠BAC=∠C,求证:四边形DBEA是矩形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,cos∠OAB═,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.
(1)求反比例函数的解析式;
(2)求直线EB的解析式;
(3)求S△OEB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过边长为1的等边△ABC的边AB上一点P作PE⊥AC于点E,Q为BC延长线上一点,当PA=CQ时,连接PQ交AC于点D,则DE的长为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图△ABC中,∠BAC=90°,AB=AC=AD,AD交BC于点P,∠CAD=30°,AC=6,求:
(1)∠BDC的度数,
(2)△ABD的周长
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在探究两个三角形满足两边和其中一边的对角对应相等(“SSA”)是否能判定两个三角形全等时,我们设计不同情形进行探究:
(1)例如,当∠B 是锐角时,如图 ,BC=EF,∠B=∠E,在射线 EM 上有点 D,使 DF=AC,用尺规画出符合条件的点 D,则△ABC 和△DEF 的关系是( );
A.全等 B. 不全等 C. 不一定全等
我们进一步发现如果能确定这两个三角形的形状,那么“SSA”是成立的.
(2)例如,已知:如图,在锐角△ABC 和锐角△DEF 中,AC=DF,BC=EF,∠B=∠E. 求证:△ABC≌△DEF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,直线l:y=x+m与x轴、y轴分别交于点A和点B(0,﹣1),抛物线y=x2+bx+c经过点B,与直线l的另一个交点为C(4,n).
(1)求n的值和抛物线的解析式;
(2)点D在抛物线上,DE∥y轴交直线l于点E,点F在直线l上,且四边形DFEG为矩形(如图2),设点D的横坐标为t(0<t<4),矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;
(3)将△AOB绕平面内某点M旋转90°或180°,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,那么我们就称这样的点为“落点”,请直接写出“落点”的个数和旋转180°时点A1的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了增强学生体质,决定开设以下体育课外活动项目:A:篮球 B:乒乓球C:羽毛球 D:足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的学生共有 人;
(2)请你将条形统计图(2)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com