【题目】在探究两个三角形满足两边和其中一边的对角对应相等(“SSA”)是否能判定两个三角形全等时,我们设计不同情形进行探究:
(1)例如,当∠B 是锐角时,如图 ,BC=EF,∠B=∠E,在射线 EM 上有点 D,使 DF=AC,用尺规画出符合条件的点 D,则△ABC 和△DEF 的关系是( );
A.全等 B. 不全等 C. 不一定全等
我们进一步发现如果能确定这两个三角形的形状,那么“SSA”是成立的.
(2)例如,已知:如图,在锐角△ABC 和锐角△DEF 中,AC=DF,BC=EF,∠B=∠E. 求证:△ABC≌△DEF.
科目:初中数学 来源: 题型:
【题目】如图,已知A(0,4),B(﹣2,2),C(3,0).
(1)作△ABC关于x轴对称的△A1B1C1;
(2)求△A1B1C1的面积与A1B1边上的高;
(3)在x轴上有一点P,使PA+PB最小,求PA+PB的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)求证:△AEF是等腰直角三角形;
(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一辆货车从A地匀速驶往相距350km的B地,当货车行驶1小时经过途中的C地时,一辆快递车恰好从C地出发以另一速度匀速驶往B地,当快递车到达B地后立即掉头以原来的速度匀速驶往A地.(货车到达B地,快递车到达A地后分别停止运动)行驶过程中两车与B地间的距离y(单位:km)与货车从出发所用的时间x(单位:h)间的函数关系如图所示.则货车到达B地后,快递车再行驶_____h到达A地.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,等腰三角形纸片,AB=AC,∠BAC=30°,按图2将纸片沿DE折叠,使得点A与点B重合,此时∠DBC= ;
(2)在(1)的条件下,将△DEB沿直线BD折叠,点E恰好落在线段DC上的点E′处,如图3,此时∠E′BC= ;
(3)若另取一张等腰三角形纸片ABC,AB=AC,沿直线DE折叠(点D,E分别为折痕与直线AC,AB的交点),使得点A与点B重合,再将所得图形沿直线BD折叠,使得E落在点E′的位置,直线BE′与直线AC交于点M.设∠BAC=m°(m<90°)画出折叠后的图形,并直接写出对应的∠MBC的大小.(用含m的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则周长的最小值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,为了测量河对岸l1上两棵古树A、B之间的距离,某数学兴趣小组在河这边沿着与AB平行的直线l2上取C、D两点,测得∠ACB=15°,∠ACD=45°,若l1、l2之间的距离为50m,则A、B之间的距离为( )
A. 50m B. 25m C. (50﹣)m D. (50﹣25)m
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com