精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD为正方形(各边相等,各内角为直角),EBC边上一点,FCD上的一点.

1)若CFE的周长等于正方形ABCD的周长的一半,求证:∠EAF=45°

2)在(1)的条件下,若DF=2CF=4CE=3,求AEF的面积.

【答案】(1)见解析;(2)15.

【解析】

1)延长CFG,使DG=BE,连接AG,由已知条件得出CE+CF+EF=CD+BC,得出DF+BE=EF,证出DF+DG=EF,即GF=EF,由SAS证明△ABE≌△ADG,得出AE=AG,∠BAE=DAG,证出∠EAG=90°,由SSS证明△AEF≌△AGF,得出∠EAF=GAF=×90°=45°;

2)由已知条件得出AB=AD=CD=BC=6BE=BC-CE=3,由(1)得:==+,即可得出答案.

(1) 证明:延长CF至G,使DG=BE,连接AG,如图所示:

∵四边形ABCD是正方形,

∴∠BAD=∠ABE=∠ADF=90°,AB=BC=CD=AD,

∴∠ADG=90°,

∵△CFE的周长等于正方形ABCD的周长的一半,

∴CE+CF+EF=CD+BC,

∴DF+BE=EF,

∴DF+DG=EF,即GF=EF,

在△ABE和△ADG中,

∴△ABE≌△ADG(SAS),

∴AE=AG,∠BAE=∠DAG,

∴∠EAG=90°,

在△AEF和△AGF中,

∴△AEF≌△AGF(SSS),

∴∠EAF=∠GAF=×90°=45°;

(2)解:∵DF=2,CF=4,CE=3,

∴AB=AD=CD=BC=2+4=6,BE=BC﹣CE=3,

由(1)得:==+=×6×3+×6×2=15.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,Ay轴正半轴上一点,过点Ax轴的平行线,交函数的图象于B点,交函数的图象于C,过Cy轴和平行线交BO的延长线于D

(1)如果点A的坐标为(0,2),求线段AB与线段CA的长度之比;

(2)如果点A的坐标为(0,a),求线段AB与线段CA的长度之比;

(3)在(1)条件下,四边形AODC的面积为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,点ADy轴正半轴上,点BC分别在x轴上,CD平分∠ACB,与y轴交于D点,∠CAO=90°-BDO.

1)求证:AC=BC

2)如图2,点C的坐标为(40),点EAC上一点,且∠DEA=DBO,求BC+EC的长;

3)如图3,过DDFACF点,点HFC上一动点,点GOC上一动点,当HFC上移动、点GOC上移动时,始终满足∠GDH=GDO+FDH,试判断FHGHOG这三者之间的数量关系,写出你的结论并加以证明.

(图3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ABC=45°,AD,BE分别为BC、AC边上的高,AD、BE相交于点F,连接CF,则下列结论,

①BF=AC;

②∠FCD=45°;

若BF=2EC,则FDC周长等于AB的长;

FBD=30°,BF=2,则AF=﹣1.其中正确的有(  )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列各组条件中,能够判定△ABC≌△DEF 的是( )

A. A=∠D,∠B=∠E,∠C=∠FB. ABDEBCEF,∠A=∠D

C. B=∠E90°,BCEFACDFD. A=∠DABDF,∠B=∠E

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,矩形ABCD中,AB=4,AD=5,EBC上一点,BE:CE=3:2,连接AE,点P从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点PPFBC交直线AE于点F.

(1)线段AE=   

(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;

(3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径;

(4)如图2,将AEC沿直线AE翻折,得到AEC',连结AC',如果∠ABF=CBC′,求t值.(直接写出答案,不要求解答过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】同学们,学习了无理数之后,我们已经把数的领域扩大到了实数的范围,这说明我们的知识越来越丰富了!可是,无理数究竟是一个什么样的数呢?下面让我们在几个具体的图形中认识一下无理数.

1)如图①△ABC是一个边长为2的等腰直角三角形,它的面积是2,把它沿着斜边的高线剪开拼成如图②的正方形ABCD,则这个正方形的面积也就等于正方形的面积即为2,则这个正方形的边长就是,它是一个无理数.

2)如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点O′,则OO′的长度就等于圆的周长,所以数轴上点O′代表的实数就是_____,它是一个无理数.

3)如图,在RtABC中,∠C=90°AC=2BC=1,根据已知可求得AB=_____,它是一个无理数.好了,相信大家对无理数是不是有了更具体的认识了,那么你也试着在图形中作出两个无理数吧:

①你能在6×8的网格图中(每个小正方形边长均为1),画出一条长为的线段吗?

②学习了实数后,我们知道数轴上的点与实数是一一对应的关系,那么你能在数轴上找到表示-的点吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明:已知,如图,ABCDGHEG平分∠BEFFG平分∠EFD,求证:∠EGF=90°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正比例函数和反比例函数的图象都经过点A(﹣3,﹣3).

(1)求正比例函数和反比例函数的表达式;

(2)把直线OA向上平移后与反比例函数的图象交于点B(﹣6,m),与x轴交于点C,求m的值和直线BC的表达式;

(3)在(2)的条件下,直线BCy轴交于点D,求以点A,B,D为顶点的三角形的面积;

(4)在(3)的条件下,点A,B,D在二次函数的图象上,试判断该二次函数在第三象限内的图象上是否存在一点E,使四边形OECD的面积S1与四边形OABD的面积S满足:S1=S?若存在,求点E的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案