精英家教网 > 初中数学 > 题目详情
16.观察下列等式:
①$\frac{1}{\sqrt{2}+1}$=$\frac{\sqrt{2}-1}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\sqrt{2}$-1
②$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{\sqrt{3}-\sqrt{2}}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\sqrt{3}$-$\sqrt{2}$
③$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\frac{\sqrt{4}-\sqrt{3}}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}$=$\sqrt{4}$-$\sqrt{3}$

回答下列问题:
①化简:$\frac{1}{\sqrt{n+1}+\sqrt{n}}$=$\sqrt{n+1}$-$\sqrt{n}$
②利用上面的规律计算:$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+…+$\frac{1}{\sqrt{99}+\sqrt{100}}$.

分析 ①分母有理化即可;
②利用已知等式得原式=$\sqrt{2}$-1+$\sqrt{3}$$-\sqrt{2}$+$\sqrt{4}$-$\sqrt{3}$+…+$\sqrt{100}$-$\sqrt{99}$,然后合并即可.

解答 解:①原式=$\frac{\sqrt{n+1}-\sqrt{n}}{(\sqrt{n+1}+\sqrt{n})(\sqrt{n+1}-\sqrt{n})}$
=$\sqrt{n+1}$-$\sqrt{n}$;
②原式=$\frac{1}{\sqrt{2}+1}$+$\frac{1}{\sqrt{3}+\sqrt{2}}$+$\frac{1}{\sqrt{4}+\sqrt{3}}$+…+$\frac{1}{\sqrt{100}+\sqrt{99}}$
=$\sqrt{2}$-1+$\sqrt{3}$$-\sqrt{2}$+$\sqrt{4}$-$\sqrt{3}$+…+$\sqrt{100}$-$\sqrt{99}$
=$\sqrt{100}$-1
=10-1
=9.
故答案为$\sqrt{n+1}$-$\sqrt{n}$.

点评 本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.阅读与计算:阅读以下材料,并完成相应的任务.
斐波那契(约1170-1250)是意大利数学家,他研究了一列数,
这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一
列数称为数列).后来人们在研究它的过程中,发现了许多意想不到
的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的
瓣数恰是斐波那契数列中的数,斐波那契数列还有很多有趣的性质,
在实际生活中也有广泛的应用.
斐波那契数列中的第n个数可以用$\frac{1}{\sqrt{5}}[(\frac{1+\sqrt{5}}{2})^{n}-(\frac{1-\sqrt{5}}{2})^{n}]$
表示(其中n≥1),这是用无理数表示有理数的一个范例.
任务:请根据以上材料,通过计算求出裴波那契数列中的第1个数和第2个数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在△ABC中,∠C=90°,BC:AC=1:$\sqrt{3}$,CD⊥AB于D,求△ABC与△CDB的面积之比?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是⊙O外一点,PA切⊙O于点A,且PA=PB.
(1)求证:PB是⊙O的切线;
(2)已知PA=2$\sqrt{3}$,BC=2.求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.分别顺次连接①平行四边形;②矩形;③菱形;④对角线相等的四边形“各边中点所构成的四边形”中,为菱形的是(  )
A.①②B.①③C.②③D.②④

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.(1)-22+30-(-$\frac{1}{2}$)-1
(2)(2x-3y)(x+2y)
(3)(-2a)3-(-a)•(3a)2
(4)2x(x2-3x-1)-3x2(x-2)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.阅读下列材料:
数学课程内容分为“数与代数”、“图形与几何”、“统计与概率”、“综合与实践”四个领域,其中“综合与实践”领域通过探讨一些具有挑战性的研究问题,给我们创造了可以动手操作、探究学习、认识数学知识间的联系、发展应用数学知识解决问题的意识和能力的机会.“综合与实践”领域在人教版七-九年级6册数学教材中共安排了约40课时的内容,主要有“数学制作与设计”、“数学探究与实验”、“数学调查与测量”、“数学建模”等活动类型,所占比例大约为30%,20%,40%,10%.这些活动以“课题学习”、“数学活动”和“拓广探索类习题”等形式分散于各章之中.“数学活动”几乎每章后都有2~3个,共60个,其中七年级22个,八年级19个;“课题学习”共7个,其中只有八年级下册安排了“选择方案”和“体质健康测试中的数据分析”2个内容,其他5册书中都各有1个;七上-九下共6册书中“拓广探索类习题”数量分别为44,39,46,35,37,23.
根据以上材料回答下列问题:
(1)人教版七-九年级数学教材中,“数学调查与测量”类活动约占16课时;
(2)选择统计表或统计图,将人教版七-九年级数学教材中“课题学习”、“数学活动”和“拓广探索类习题”的数量表示出来.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,在△ABC中,AB=AC,以AB为直径作⊙O,分别交BC、AC于点D、E,连接AD,过点D作DF⊥AB,垂足为点F.
(1)求证:DF是⊙O的切线;
(2)若AE=DE,求∠C的度数;
(3)求证:CD2=AC•BF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图1,四边形ABCD是菱形,AD=5,过点D作AB的垂线DH,垂足为H,交对角线AC于M,连接BM,且AH=3.

(1)求DM的长;
(2)如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式;
(3)在(2)的条件下,当点P在边AB上运动时,是否存在这样的t的值,使∠MPB与∠BCD互为余角?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案