精英家教网 > 初中数学 > 题目详情
7.如图,若∠1+∠2=180°,则l1∥l2,试说明理由(填空).
理由:
∵∠2+∠3=180°(平角的定义),
∠1+∠2=180°(已知),
∴∠1=∠3(同角的补角相等)
∴l1∥l2(同位角相等,两直线平行)

分析 根据平角定义可得∠2+∠3=180°,再由∠1+∠2=180°可根据同角的补角相等可得∠1=∠3,然后根据同位角相等,两直线平行可得l1∥l2

解答 解:∵∠2+∠3=180°(平角的定义),
∠1+∠2=180°(已知),
∴∠1=∠3(同角的补角相等)
∴l1∥l2(同位角相等,两直线平行),
故答案为:180°;已知;同角的补角相等;同位角相等,两直线平行.

点评 此题主要考查了平行线的判定,以及补角的性质,关键是掌握同位角相等,两直线平行.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.合肥市某中学科技创新训练小组有A、B、C三位同学,机器人训练小组有D、E、F、G四位同学,他们的水平差不多,现要从中抽取五位同学组成校队参加省级比赛,其中两名科技创新的,三名机器人的,如果学校按照要求随机抽取.
(1)D同学被抽到的概率是多大?
(2)正好抽到ABDEF的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.2$\sqrt{2}$÷(4$\sqrt{2}$-3$\sqrt{6}$)是否等于2$\sqrt{2}$÷4$\sqrt{2}$-2$\sqrt{2}$÷3$\sqrt{6}$呢?为什么?它们的计算结果分别是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知:?ABCD中,DE⊥AC于E,BF⊥AC于F,M,N分别是DC,AB的中点.求证:四边形MENF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在△AOB中,AO=BO,以O圆心作圆和AB相切于点F,和OA,OB相交于点D,C,连接OF交于点E.
(1)求证:CD∥AB;
(2)若2OE=3EF,求△AOB三边的比值;
(3)若CD=8,EF=2,求AB的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.先阅读下列材料:
化简$\frac{1}{\sqrt{2}+\sqrt{3}}$时,甲、乙两同学的解法分别为:
甲:$\frac{1}{\sqrt{2}+\sqrt{3}}$=$\frac{3-2}{\sqrt{2}+\sqrt{3}}$=$\frac{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}{\sqrt{2}+\sqrt{3}}$=$\sqrt{3}$-$\sqrt{2}$;
乙:$\frac{1}{\sqrt{2}+\sqrt{3}}$=$\frac{1•(\sqrt{2}-\sqrt{3})}{(\sqrt{2}+\sqrt{3})(\sqrt{2}-\sqrt{3})}$=$\frac{\sqrt{2}-\sqrt{3}}{-1}$=$\sqrt{3}$-$\sqrt{2}$;
下面请解答:
(1)两位同学的解法是否正确?
(2)请用上述两种方法化简:$\frac{2}{\sqrt{5}-\sqrt{3}}$;
(3)计算$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+$\frac{1}{\sqrt{4}+\sqrt{5}}$+…+$\frac{1}{\sqrt{2014}+\sqrt{2015}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,AB为圆O的直径,点C是AB延长线上一点,且BC=OB,CD、CE分别与圆O相切于点D、E,若AD=5,求DE的长?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.已知,如图,在△ABC中,∠B=45°,∠BCA=30°,过点A、B、C三点作⊙O,过点C作⊙O的切线交BA延长线于点D,连接OA交BC于E.
(1)求证:OA∥CD;
(2)求证:△ABE∽△DCA;
(3)若OA=2,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图所示,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?

查看答案和解析>>

同步练习册答案