精英家教网 > 初中数学 > 题目详情

【题目】已知∠MON90°,等边三角形ABC的一个顶点B是射线ON上的一定点,顶点A于点O重合,顶点C在∠MON内部

(1)当点A在射线OM上移动到A1时,连接A1B,请在∠MON内部作出以A1B为一边的等边三角形A1BC1(保留作图痕迹,不写作法)

(2)A1BOC交于点QBC的延长线与A1C1交于点D.求证:△BCQ∽△BA1D

(3)连接CC1,试猜想∠BCC1为多少度,并证明你的猜想.

【答案】(1)详见解析;(2)详见解析;(3)BCC190°,理由详见解析.

【解析】

1)分别以BA1为圆心,A1B长为半径画弧,两弧交于一点C1,连接A1C1BC1即可;
2)根据条件可以得到∠BCQ=BA1D=60°,∠A1BD=QBC,即可证出△BCQ∽△BA1D
3)首先证明∠ABA1=CBC1,再利用SAS定理证出△A1BA≌△C1BC,即可得到∠BCC1=BAA1=90°

1)如图所示:

2)∵△ACB和△A1C1B都是等边三角形,

∴∠BCQ=∠BA1D60°

∵∠A1BD=∠QBC

∴△BCQ∽△BA1D

3)猜想∠BCC190°

∵△ACB和△A1C1B都是等边三角形,

∴∠CBA=∠A1BC160°A1BC1BABCB

∴∠ABA1=∠CBC1

在△A1BA和△C1BC中:

∴△A1BA≌△C1BCSAS),

∴∠BCC1=∠BAA190°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若抛物线L:y=ax2+bx+c(a,b,c是常数,abc0)与直线l都经过y轴上的同一点,且抛物线L的顶点在直线l上,则称次抛物线L与直线l具有一带一路关系,并且将直线l叫做抛物线L路线,抛物线L叫做直线l带线”.

(1)若路线”l的表达式为y=2x﹣4,它的带线”L的顶点的横坐标为﹣1,带线”L的表达式;

(2)如果抛物线y=mx2﹣2mx+m﹣1与直线y=nx+1具有一带一路关系,求m,n的值;

(3)设(2)中的带线”L与它的路线”ly轴上的交点为A.已知点P带线”L上的点,当以点P为圆心的圆与路线”l相切于点A时,求出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学兴趣小组为了研究中小学男生身高ycm)和年龄x(岁)的关系,从某市官网上得到了该市2017年统计的中小学男生各年龄组的平均身高,见下表:如图已经在直角坐标系中描出了表中数据对应的点,并发现前5个点大致位于直线AB上,后7个点大致位于直线CD上.

年龄组x

7

8

9

10

11

12

13

14

15

16

17

男生平均身高y

115.2

118.3

122.2

126.5

129.6

135.6

140.4

146.1

154.8

162.9

168.2

1)该市男学生的平均身高从   岁开始增加特别迅速.

2)求直线AB所对应的函数表达式.

3)直接写出直线CD所对应的函数表达式,假设17岁后该市男生身高增长速度大致符合直线CD所对应的函数关系,请你预测该市18岁男生年龄组的平均身高大约是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点AACx轴交抛物线于点C,AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.

(1)求抛物线的解析式;

(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;

(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在梯形ABCD中,ABCD,D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.

(1)用含x的代数式表示线段CF的长;

(2)如果把CAE的周长记作CCAEBAF的周长记作CBAF,设=y,求y关于x的函数关系式,并写出它的定义域;

(3)当∠ABE的正切值是时,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y12x+2x轴、y轴于点AC,直线x轴、y轴于点BC,点P(m1)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为(  )

A.2B.2.5C.3D.3.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【探索新知】:如图1,射线OC在∠AOB的内部,图中共有3个角:∠AOBAOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB巧分线

1)一个角的平分线   这个角的巧分线;(填不是

2)如图2,若∠MPN=α,且射线PQ是∠MPN巧分线,则∠MPQ=   ;(用含α的代数式表示出所有可能的结果)

【深入研究】:如图2,若∠MPN=60°,且射线PQ绕点PPN位置开始,以每秒10°的速度逆时针旋转,当PQPN180°时停止旋转,旋转的时间为t秒.

3)当t为何值时,射线PM是∠QPN巧分线

4)若射线PM同时绕点P以每秒的速度逆时针旋转,并与PQ同时停止,请直接写出当射线PQ是∠MPN巧分线t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果零售商店,通过对市场行情的调查,了解到两种水果销路比较好,一种是冰糖橙,一种是睡美人西瓜.通过两次订货购进情况分析发现,买40箱冰糖橙和15箱睡美人西瓜花去2000元,买20箱冰糖橙和30箱睡美人西瓜花去1900元.

1)请求出购进这两种水果每箱的价格是多少元?

2)该水果零售商在五一期间共购进了这两种水果200箱,冰糖橙每箱以40元价格出售,西瓜以每箱50元的价格出售,获得的利润为w元.设购进的冰糖橙箱数为a箱,求w关于a的函数关系式;

3)在条件(2)的销售情况下,但是每种水果进货箱数不少于30箱,西瓜的箱数不少于冰糖橙箱数的5倍,请你设计进货方案,并计算出该水果零售商店能获得的最大利润是多少?

查看答案和解析>>

同步练习册答案