精英家教网 > 初中数学 > 题目详情

【题目】如图,在坡度的斜坡AB上立有一电线杆EF,工程师在点A处测得E的仰角为,沿斜坡前进20米到达B,此时测得点E的仰角为,现要在斜坡AB上找一点P,在P处安装一根拉绳PE来固定电线杆,以使EF保持竖直,为使拉绳PE最短,则FP的长度约为参考数据:

A. B. C. D.

【答案】C

【解析】BD∥AC,如图所示,

∵斜坡AB的坡度i=1:

∴tan∠BAC=1:=,,

∴∠BAC=30°,

∵∠EAC=60°,

∴∠EAF=30°,

∵要使点EAB的距离最短,

∴EP⊥AB于点P,

∴tan∠EAP=

∴AP=

∵∠EBD=15°,BD∥AC,

∴∠DBA=∠BAC=30°,

∴∠EBP=45°,

∴EP=PB,

∵AP+PB=AB=20米,

+EP=20,

解得,EP=10-10,

又∵EF∥BC,∠B=90°-∠BAC=60°,

∴∠EFP=60°,

∵tan∠EFP=

tan60°=

解得,PF≈4.2米,

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】目前由重庆市教育委员会,渝北区人们政府主办的阳光下成长重庆市第八届中小学生艺术展演活动落下帷幕,重庆一中学生舞蹈团、管乐团、民乐团、声乐团、话剧团等五大艺术团均荣获艺术表演类节目一等奖,重庆一中获优秀组织奖,重庆一中老师李珊获先进个人奖,其中重庆一中舞蹈团将代表重庆市参加明年的全国集中展演比赛,若以下两个统计图统计了舞蹈组各代表队的得分情况:

1m   ,在扇形统计图中分数为7的圆心角度数为   度.

2)补全条形统计图,各组得分的中位数是   分,众数是   分.

3)若舞蹈组获得一等奖的队伍有2组,已知主办方各组的奖项个数是按相同比例设置的,若参加该展演活动的总队伍数共有120组,那么该展演活动共产生了多少个一等奖?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.

(结果保留整数,参考数据:sin35°≈,cos35°≈,tan35°≈)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人相约元旦登山,甲、乙两人距地面的高度y(m)与登山时间x(min)之间的函数图像如图所示,根据图像所提供的信息解答下列问题:

1t= min.

2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,

则甲登山的的上升速度是 m/min

请求出甲登山过程中,距地面的高度y(m)与登山时间x(min)之间的函数关系式.

当甲、乙两人距地面高度差为70m时,求x的值(直接写出满足条件的x值).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.

(1)求证:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°180°270°后形成的图形。若AB=2,则图中阴影部分的面积为

A. 124 B. 5 C. 12-4 D. 6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,AB=13,BC=50,BC边上的高为12.点P从点B出发,沿B﹣A﹣D﹣A运动,沿B﹣A运动时的速度为每秒13个单位长度,沿A﹣D﹣A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度.P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.

(1)当点P沿A﹣D﹣A运动时,求AP的长(用含t的代数式表示).

(2)连结AQ,在点P沿B﹣A﹣D运动过程中,当点P与点B、点A不重合时,记APQ的面积为S.求S与t之间的函数关系式.

(3)过点Q作QRAB,交AD于点R,连结BR,如图.在点P沿B﹣A﹣D运动过程中,当线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分时t的值.

(4)设点C、D关于直线PQ的对称点分别为C′、D′,直接写出C′D′BC时t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点AD为圆心,以大于的长为半径在AD的两侧作弧,交于两点MN;第二步,连结MN,分别交ABAC于点EF;第三步,连结DEDF..若BD=6AF=4CD=3,则BE的长是( )

A. 2 B. 4 C. 6 D. 8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.

(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1__ __S2+S3;(填“>”“=”或“<”)

(2)写出图中的三对相似三角形,并选择其中一对进行证明.

查看答案和解析>>

同步练习册答案