精英家教网 > 初中数学 > 题目详情

【题目】制造厂的某车间生产圆形铁片和长方形铁片,如图,两个圆形铁片和一个长方形铁片可以制造成一个油桶.已知该车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.问安排生产圆形铁片和长方形铁片的工人各为多少人时,才能使生产的铁片恰好配套?

【答案】共有24人生产圆形铁片,18人生产长方形铁片,才能使生产的铁片恰好配套.

【解析】试题分析:本题可设共有 人生产圆形铁片,则共有 人生产长方形铁片,由两张圆形铁片与一张长方形铁片可配套成一个密封圆桶可列出关于的方程,求解即可.

试题解析:设共有人生产圆形铁片,则共有人生产长方形铁片,

根据题意列方程得:

解得:

答:共有24人生产圆形铁片,18人生产长方形铁片,才能使生产的铁片恰好配套.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了考查一种零件的加工精度,从中抽出40只进行检测,其尺寸数据如下(单位:微米):

161,165,164,166,160,158,163,162,168,159,

147,165,167,151,164,159,152,159,149,172,

162,157,162,169,156,164,163,157,163,165,

173,159,157,169,165,154,153,163,168,169.

试列出样本频数及频率分布表,绘制频数分布直方图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国庆期间,为了满足百姓的消费需求,某商店计划用170000元购进一批家电,这批家电的进价和售价如表:

类别

彩电

冰箱

洗衣机

进价(元/台)

2000

1600

1000

售价(元/台)

2300

1800

1100

若在现有资金允许的范围内,购买表中三类家电共100台,其中彩电台数是冰箱台数的2倍,设该商店购买冰箱x台.
(1)商店至多可以购买冰箱多少台?
(2)购买冰箱多少台时,能使商店销售完这批家电后获得的利润最大?最大利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,∠B=∠D=90°,∠BAD=105°,在BCCD上分别找一点MN,使得△AMN周长最小,则∠AMN+∠ANM的度数为 ( )

A. 100° B. 105° C. 120° D. 150°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.

(1)如图,若∠AOC=40°,求∠DOE的度数;

(2)如图,若∠AOC=α,直接写出∠DOE的度数(用含α的代数式表示)

(3)将图中的∠COD绕顶点O顺时针旋转至图的位置,OE平分∠BOC.

探究∠AOC∠DOE的度数之间的关系,写出你的结论,并说明理由;

∠AOC的内部有一条射线OF,且∠AOC﹣3∠AOF=2∠BOE,试确定∠AOF∠DOE的度数之间的关系,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】同学们,足球是世界上第一大运动,你热爱足球运动吗?已知在足球比赛中,胜一场得3分,平一场得1分,负一场得0分,一队共踢了30场比赛,负了9场,共得47分,那么这个队胜了(  )

A. 10 B. 11 C. 12 D. 13

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在Rt△ABC中,∠C=90°,∠A=60°,AC=3,点DAB的中点,点E为线段BC上的点,连接DE,把△BDE沿着DE翻折得△B1DE

(1)当ADB1C构成的四边形为平行四边形,求DE的长;

(2)当DB1AC时,求△DE B1和△ABC重叠部分的面积

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,平面直角坐标系中,直线AB:y=﹣x+bx轴于点A(8,0),交y轴正半轴于点B.

(1)求点B的坐标;

(2)如图2,直线ACy轴负半轴于点C,AB=BC,P为线段AB上一点,过点Py轴的平行线交直线AC于点Q,设点P的横坐标为t,线段PQ的长为d,求dt之间的函数关系式;

(3)(2)的条件下,MCA延长线上一点,且AM=CQ,在直线AC上方的直线AB上是否存在点N,使QMN是以QM为斜边的等腰直角三角形?若存在,请求出点N的坐标及PN的长度;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c(a≠0)与x轴交于点A(﹣1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0<m<3),连结DC并延长至E,使得CE=CD,连结BE,BC.

(1)求抛物线的解析式;

(2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;

(3)求BCE的面积最大值.

查看答案和解析>>

同步练习册答案