【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c与⊙M相交于A、B、C、D四点,其中A、B两点的坐标分别为(-1,0),(0,-2),点D在x轴上且AD为⊙M的直径.点E是⊙M与y轴的另一个交点,过劣弧ED上的点F作FH⊥AD于点H,且FH=1.5.
(1)求点D的坐标及该抛物线对应的函数表达式;
(2)若点P是x轴上的一个动点,试求出△PEF的周长最小时点P的坐标.
【答案】(1)D(4,0),y=x2-x-2;(2)P(2,0).
【解析】
(1)首先根据圆的轴对称性求出点D的坐标,将A、B、D三点代入,即可求出本题的答案;
(2)由于点E与点B关于x轴对称,所以,连接BF,直线BF与x轴的交点,即为点P,据此即可得解.
(1)连接BD.
∵AD是⊙M的直径,∴∠ABD=90°,∴△AOB∽△ABD,∴.在Rt△AOB中,AO=1,BO=2,根据勾股定理得:AB,∴,∴AD=5,∴DO=AD﹣AO=5﹣1=4,∴D(4,0),把点A(﹣1,0)、B(0,﹣2)、D(4,0)代入y=ax2+bx+c可得:
,解得:,∴抛物线表达式为:;
(2)连接FM.在Rt△FHM中,FM,FH,∴MH2,OM=AM﹣OA,∴OH=OM+MH,∴F(),设直线BF的解析式为y=kx+b,则:,∴直线BF的解析式为:y=x﹣2,连接BF交x轴于点P.
∵点E与点B关于x轴对称,∴点P即为所求,当y=0时,x=2,∴P(2,0).
科目:初中数学 来源: 题型:
【题目】如图1,2分别是某款篮球架的实物图与示意图,已知AB⊥BC于点B,底座BC的长为1米,底座BC与支架AC所成的角∠ACB=60°,点H在支架AF上,篮板底部支架EH∥BC,EF⊥EH于点E,已知AH长米,HF长米,HE长1米.
(1)求篮板底部支架HE与支架AF所成的角∠FHE的度数.
(2)求篮板底部点E到地面的距离.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品的进价为每件30元,售价为每件40元,每周可卖出180件;如果每件商品的售价每上涨1元,则每周就会少卖出5件,但每件售价不能高于50元,设每件商品的售价上涨x元(x为整数),每周的销售利润为y元.
(1)求y与x的函数关系式,并直接写出自变量x的取值范围;
(2)每件商品的售价为多少元时,每周可获得最大利润?最大利润是多少?
(3)每件商品的售价定为多少元时,每周的利润恰好是2145元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某工厂要选一块矩形铁皮加工成一个底面半径为20 cm,高为cm的圆锥形漏斗,要求只能有一条接缝(接缝忽略不计),请问:选长、宽分别为多少厘米的矩形铁皮,才能使所用材料最省?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,且BF=BC.⊙O是△BEF的外接圆,连结BD.
(1)求证:△ABC≌△EBF;
(2)试判断BD与⊙O的位置关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,过⊙O外一点P作⊙O的两条切线PA,PB,切点分别为A,B.下列结论中:
①OP垂直平分AB;
②∠APB=∠BOP;
③△ACP≌△BCP;
④PA=AB;
⑤若∠APB=80°,则∠OBA=40°.
一定正确的是___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知x1,x2是关于x的一元二次方程4kx2-4kx+k+1=0的两个实数根,是否存在实数k,使(2x1-x2)(x1-2x2)=-成立?若存在,求出k的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,M、N、C三点的坐标分别为(,1),(3,1),(3,0),点A为线段MN上的一个动点,连接AC,过点A作交y轴于点B,当点A从M运动到N时,点B随之运动,设点B的坐标为(0,b),则b的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…,按如图的方式放置.点A1,A2,A3,…,An和点C1,C2,C3,…,Cn分别落在直线y=x+1和x轴上.抛物线L1过点A1,B1,且顶点在直线y=x+1上,抛物线L2过点A2,B2,且顶点在直线y=x+1上,…,按此规律,抛物线Ln过点An,Bn,且顶点也在直线y=x+1上,其中抛物线L2交正方形A1B1C1O的边A1B1于点D1,抛物线L3交正方形A2B2C2C1的边A2B2于点D2,…,抛物线Ln+1交正方形AnBnCnCn-1的边AnBn于点Dn(其中n≥2且n为正整数).
(1)直接写出下列点的坐标:B1________,B2________,B3________;
(2)写出抛物线L2、L3的解析式,并写出其中一个解析式求解过程,再猜想抛物线Ln的顶点坐标
(3)设A1D1=k1·D1B1,A2D2=k2·D2B2,试判断k1与k2的数量关系并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com