精英家教网 > 初中数学 > 题目详情

【题目】如图,某工厂要选一块矩形铁皮加工成一个底面半径为20 cm,高为cm的圆锥形漏斗,要求只能有一条接缝(接缝忽略不计),请问:选长、宽分别为多少厘米的矩形铁皮,才能使所用材料最省?

【答案】选长为90 cm,宽为60 cm的矩形铁皮,才能使所用材料最省.

【解析】

由于底面半径,高线,母线正好组成直角三角形,可由勾股定理求得母线长,则扇形的圆心角=底面周长×180÷(母线长×π),可在一长方形内画出一半径为60,圆心角为120°的扇形,有两种方案,由矩形和直角三角形的性质求得矩形长和宽,进而求得矩形的面积,比较即可得出用材料最省的方案.

∵圆锥形漏斗的底面半径为20cm,高为cm,∴圆锥的母线长为R60(cm)

设圆锥的侧面展开图的圆心角为n°,则有=2π×20,解得:n=120

方案一:如图①,扇形的半径为60 cm,矩形的宽为60 cm,易求得矩形的长为 cm

此时矩形的面积为= (cm2)

方案二:如图②,扇形与矩形的两边相切,有一边重合,易求得矩形的宽为60 cm,长为3060=90(cm),此时矩形的面积为90×60=5 400(cm2)

>5400,∴方案二所用材料最省,即选长为90 cm,宽为60 cm的矩形铁皮,才能使所用材料最省.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,已知二次函数y=mx2+3mx﹣m的图象与x轴交于A,B两点(点A在点B的左侧),顶点D和点B关于过点A的直线l:y=﹣x﹣对称.

(1)求A、B两点的坐标及二次函数解析式;

(2)如图2,作直线AD,过点BAD的平行线交直线1于点E,若点P是直线AD上的一动点,点Q是直线AE上的一动点.连接DQ、QP、PE,试求DQ+QP+PE的最小值;若不存在,请说明理由:

(3)将二次函数图象向右平移个单位,再向上平移3个单位,平移后的二次函数图象上存在一点M,其横坐标为3,在y轴上是否存在点F,使得∠MAF=45°?若存在,请求出点F坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知反比例函数y(k≠0,k是常数)的图象过点P(-3,5).

(1)求此反比例函数的解析式;

(2)在函数图象上有两点(a1b1)和(a2b2),若a1a2,试判断b1b2的大小关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的图象与x轴交于AB两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.

1)求ABC的坐标;

2)点M为线段AB上一点(点M不与点AB重合),过点Mx轴的垂线,与直线AC交于点E,与抛物线交于点P,过点PPQ∥AB交抛物线于点Q,过点QQN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;

3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点Fy轴的平行线,与直线AC交于点G(点G在点F的上方).FG=DQ,求点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABBC2,以AB为直径的⊙O分别交BCAC于点DE,且点DBC的中点.

(1)求证:△ABC为等边三角形.

(2)DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图:已知AB是⊙O的直径,BC是⊙O的切线,OC与⊙O相交于点D,连结AD并延长,与BC相交于点E。

(1)若BC=,CD=1,求⊙O的半径;

(2)取BE的中点F,连结DF,求证:DF是⊙O的切线。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,抛物线yax2bxc⊙M相交于ABCD四点,其中AB两点的坐标分别为(10)(0,-2),点Dx轴上且AD⊙M的直径.点E⊙My轴的另一个交点,过劣弧ED上的点FFH⊥AD于点H,且FH1.5.

(1)求点D的坐标及该抛物线对应的函数表达式;

(2)若点Px轴上的一个动点,试求出△PEF的周长最小时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在同一直角坐标系中,函数y=mx+m(m≠0)的图象可能是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某小区开展了行车安全,方便居民的活动,对地下车库作了改进.如图,这小区原地下车库的入口处有斜坡AC长为13米,它的坡度为i12.4ABBC,为了居民行车安全,现将斜坡的坡角改为13°,即∠ADC13°(此时点BCD在同一直线上).

1)求这个车库的高度AB

2)求斜坡改进后的起点D与原起点C的距离(结果精确到0.1米).

(参考数据:sin13°≈0.225cos13°≈0.974tan13°≈0.231cot13°≈4.331

查看答案和解析>>

同步练习册答案