精英家教网 > 初中数学 > 题目详情

【题目】为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:

1)将条形统计图补充完整;被调查的学生周末阅读时间众数是多少小时,中位数是多少小时;

2)计算被调查学生阅读时间的平均数;

3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.

【答案】1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.

【解析】

1)根据统计图可以求得本次调查的学生数,从而可以求得阅读时间1.5小时的学生数,进而可以将条形统计图补充完整;由补全的条形统计图可以得到抽查的学生周末阅读时间的众数、中位数.
2)根据补全的条形统计图可以求得所有被调查学生阅读时间的平均数.
3)用总人数乘以样本中周末阅读时间不低于1.5小时的人数占总人数的比例即可得.

解:(1)由题意可得,本次调查的学生数为:30÷30%100

阅读时间1.5小时的学生数为:10012301840

补全的条形统计图如图所示,

由补全的条形统计图可知,被调查的学生周末阅读时间众数是1.5小时,中位数是1.5小时,

故答案为:1.51.5

2)所有被调查学生阅读时间的平均数为:×12×0.5+30×1+40×1.5+18×2)=1.32小时,

即所有被调查同学的平均阅读时间为1.32小时.

3)估计周末阅读时间不低于1.5小时的人数为500×290(人).

故答案为:(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,已知直线y=﹣2x+4与两坐标轴分别交于点A、B,点C为线段OA上一动点,连接BC,作BC的中垂线分别交OB、AB交于点D、E

l当点C与点O重合时,DE=

2当CEOB时,证明此时四边形BDCE为菱形;

3在点C的运动过程中,直接写出OD的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在梯形ABCD中,ABCD,D=90°,AD=CD=2,点E在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.

(1)用含x的代数式表示线段CF的长;

(2)如果把CAE的周长记作CCAEBAF的周长记作CBAF,设=y,求y关于x的函数关系式,并写出它的定义域;

(3)当∠ABE的正切值是时,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场购进甲、乙两种商品,甲种商品共用了20000元,乙种商品共用了24000元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.

1)求甲、乙两种商品的每件进价;

2)该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于24600元,问甲种商品按原销售单价至少销售多少件?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB3BC4EF是对角线AC上的两个动点,分别从AC同时出发相向而行,速度均为1cm/s,运动时间为t秒,0≤t≤5

1AE________EF__________

2)若GH分别是ABDC中点,求证:四边形EGFH是平行四边形.(相遇时除外)

3)在(2)条件下,当t为何值时,四边形EGFH为矩形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把下列各数填在相应的大括号里:

1,﹣,8.9,﹣7, ,﹣3.2,+1 008,﹣0.06,28,﹣9.

正整数集合:{______…};

负整数集合:{______…};

正分数集合:{______…};

负分数集合:{______…}.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一名足球守门员练习折返跑,从球门的位置出发,向前记作正数,返回记作负数,他的记录如下(单位:米):

+6

- 5

+9

- 10

+13

- 9

- 4

(1)守门员是否回到了原来的位置?

(2)守门员离开球门的位置最远是多少?

(3)守门员一共走了多少路程?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“瓯柑”是温州的名优水果品牌。在平阳种植基地计划种植AB两种瓯柑30亩,已知AB两种瓯柑的年产量分别为2000千克/亩、2500千克/亩,收购单价分别是8/千克、7/千克.

1)若该基地收获AB两种瓯柑的年总产量为68000千克,求AB两种瓯柑各种多少亩?

2)若要求种植A种瓯柑的亩数不少于B种的一半,全部收购该基地瓯柑,那么种植AB两种瓯柑各多少亩时,其年总收入最多?最多为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,双边直尺有两条平行的边,但是没有刻度,可以用来画等距平行线:

我们也可用工具自制(如图):

下面是小My同学设计的“过直线外一点作这条直线的平行线”的双边直尺作图过程.

1)根据小My同学的作图过程,请证明OPH中点.

2)根据小My同学的作图过程,请证明PQl

查看答案和解析>>

同步练习册答案