精英家教网 > 初中数学 > 题目详情

【题目】已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)

【答案】
(1)AH=AB
(2)数量关系成立.如图②,延长CB至E,使BE=DN.

∵ABCD是正方形,

∴AB=AD,∠D=∠ABE=90°,

在Rt△AEB和Rt△AND中,

∴Rt△AEB≌Rt△AND,

∴AE=AN,∠EAB=∠NAD,

∴∠EAM=∠NAM=45°,

在△AEM和△ANM中,

∴△AEM≌△ANM.

∴SAEM=SANM,EM=MN,

∵AB、AH是△AEM和△ANM对应边上的高,

∴AB=AH.


(3)如图③分别沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND,

∴BM=2,DN=3,∠B=∠D=∠BAD=90°.

分别延长BM和DN交于点C,得正方形ABCD,

由(2)可知,AH=AB=BC=CD=AD.

设AH=x,则MC=x﹣2,NC=x﹣3,

在Rt△MCN中,由勾股定理,得MN2=MC2+NC2

∴52=(x﹣2)2+(x﹣3)2(6分)

解得x1=6,x2=﹣1.(不符合题意,舍去)

∴AH=6.


【解析】解:(1)如图①AH=AB. (1)由三角形全等可以证明AH=AB,(2)延长CB至E,使BE=DN,证明△AEM≌△ANM,能得到AH=AB,(3)分别沿AM、AN翻折△AMH和△ANH,得到△ABM和△AND,然后分别延长BM和DN交于点C,得正方形ABCE,设AH=x,则MC=x﹣2,NC=x﹣3,在Rt△MCN中,由勾股定理,解得x.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了增强学生的身体素质,教育部门规定学生每天参加体育锻炼时间不少于1小时,为了解学生参加体育锻炼的情况,抽样调查了900名学生每天参加体育锻炼的时间,并将调查结果制成如图所示的两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)求参加体育锻炼时间为1小时的人数.
(2)求参加体育锻炼时间为1.5小时的人数.
(3)补全频数分布直方图.
(4)这次调查参加体育锻炼时间的中位数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是二次函数y1=ax2+bx+c(a≠0)和一次函数y2=mx+n(m≠0)的图象,当y2>y1 , x的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:

组别

成绩x分

频数(人数)

第1组

50≤x<60

6

第2组

60≤x<70

8

第3组

70≤x<80

14

第4组

80≤x<90

a

第5组

90≤x<100

10

请结合图表完成下列各题:

(1)①求表中a的值;②频数分布直方图补充完整;
(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=BD,点E、F分别在BC、CD上,且BE=CF,连接BF、DE交于点M,延长ED到H使DH=BM,连接AM,AH,则以下四个结论:①△BDF≌△DCE;②∠BMD=120°;③△AMH是等边三角形④S四边形ABMD= AM2
其中正确结论的是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一抛物线型拱桥,当拱顶到水面的距离为2米时,水面宽度为4米;那么当水位下降1米后,水面的宽度为米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(﹣3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H,链接BM

(1)菱形ABCO的边长
(2)求直线AC的解析式;
(3)动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,
①当0<t< 时,求S与t之间的函数关系式;
②在点P运动过程中,当S=3,请直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在半径为6的⊙O内有两条互相垂直的弦AB和CD,AB=8,CD=6,垂足为E.则tan∠OEA的值是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】位于张家界核心景区的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像体AD的高度(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)

查看答案和解析>>

同步练习册答案