精英家教网 > 初中数学 > 题目详情

【题目】“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:

组别

成绩x分

频数(人数)

第1组

50≤x<60

6

第2组

60≤x<70

8

第3组

70≤x<80

14

第4组

80≤x<90

a

第5组

90≤x<100

10

请结合图表完成下列各题:

(1)①求表中a的值;②频数分布直方图补充完整;
(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.

【答案】
(1)解:①由题意和表格,可得

a=50﹣6﹣8﹣14﹣10=12,

即a的值是12;

②补充完整的频数分布直方图如下图所示,


(2)解:∵测试成绩不低于80分为优秀,

∴本次测试的优秀率是:


(3)解:设小明和小强分别为A、B,另外两名学生为:C、D,

则所有的可能性为:(AB)、(AC)、(AD)、(BA)、(BC)、(BD)、(CA)、(CB)、(CD)、(DA)、(DB)、(DC),

所以小明和小强分在一起的概率为:


【解析】(1)①根据题意和表中的数据可以求得a的值;②由表格中的数据可以将频数分布表补充完整;(2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;(3)根据题意可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率.
【考点精析】解答此题的关键在于理解频数分布直方图的相关知识,掌握特点:①易于显示各组的频数分布情况;②易于显示各组的频数差别.(注意区分条形统计图与频数分布直方图),以及对列表法与树状图法的理解,了解当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】把大小完全相同的6个乒乓球分成两组,每组3个,每组乒乓球上面分别标有数字1,2,3,将这两组乒乓球分别放入两个盒子中搅匀,再从每个盒子中各随机取出1个乒乓球,请用画树状图(或列表)的方法,求取出的2个乒乓球上面数字之和为偶数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a,b,c分别为 三边的长.
(1)如果 是方程的根,则 的形状为
(2)如果方程有两个相等的实数根,试判断 的形状,并说明理由;
(3)如果 是等边三角形,试求这个一元二次方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】大众服装店今年4月用4000元购进了一款衬衣若干件,上市后很快售完,服装店于5月初又购进同样数量的该款衬衣,由于第二批衬衣进货时价格比第一批衬衣进货时价格提高了20元,结果第二批衬衣进货用了5000元.
(1)第一批衬衣进货时的价格是多少?
(2)第一批衬衣售价为120元/件,为保证第二批衬衣的利润率不低于第一批衬衣的利润率,那么第二批衬衣每件售价至少是多少元? (提示:利润=售价﹣成本,利润率=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】 ,…;则a2011的值为 . (用含m的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC的面积为16,点D是BC边上一点,且BD= BC,点G是AB上一点,点B在△ABC内部,且四边形BDHG是平行四边形,则图中阴影部分的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD中,∠C=90°,点P是CD边上的动点,连接AP,E,F分别是AB,AP的中点,当点P在CD上从点D向点C移动过程中,下列结论成立的是(
A.线段EF的长先减小后增大
B.线段EF的长不变
C.线段EF的长逐渐增大
D.线段EF的长逐渐减小

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交斜边AB于点M,若H是AC的中点,连接MH.
(1)求证:MH为⊙O的切线.
(2)若MH= ,tan∠ABC= ,求⊙O的半径.
(3)在(2)的条件下分别过点A、B作⊙O的切线,两切线交于点D,AD与⊙O相切于N点,过N点作NQ⊥BC,垂足为E,且交⊙O于Q点,求线段NQ的长度.

查看答案和解析>>

同步练习册答案