精英家教网 > 初中数学 > 题目详情

【题目】计算:

1-40-28--19+-24
2)(-81)÷÷(-16
3-22÷(--1)×48
4-72+2×(-32--6)÷(-

【答案】1-73;(21;(310;(4-49

【解析】

1)根据有理数的加减法可以解答本题;
2)根据有理数的乘除法可以解答本题;
3)根据有理数的乘除法和加减法可以解答本题;
4)根据有理数的乘除法和加减法可以解答本题.

1-40-28--19+-24
=-40+-28+19+-24
=-73
2)(-81)÷÷-16
=81×
=1
3-22÷--1×48

=-4×-2-×48
=8-66-112+180
=10
4-72+2×-32--6÷-
=-49+2×9-6×3
=-49+18-18
=-49

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义:若以一条线段为对角线作正方形,则称该正方形为这条线段的对角线正方形.例如,图①中正方形ABCD即为线段BD对角线正方形.如图②,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,点P从点C出发,沿折线CA﹣AB5cm/s的速度运动,当点P与点B不重合时,作线段PB对角线正方形,设点P的运动时间为t(s),线段PB对角线正方形的面积为S(cm2).

(1)如图③,借助虚线的小正方形网格,画出线段AB对角线正方形”.

(2)当线段PB对角线正方形有两边同时落在△ABC的边上时,求t的值.

(3)当点P沿折线CA﹣AB运动时,求St之间的函数关系式.

(4)在整个运动过程中,当线段PB对角线正方形至少有一个顶点落在∠A的平分线上时,直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题探究

(1)如图,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.

(2)如图,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求APB周长的最大值;

问题解决

(3)如图,AC为边长为2的菱形ABCD的对角线,ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求APB周长的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某服装厂生产一种夹克和T恤,夹克每件定价120元,T恤每件定价60元.厂方在开展促销活动期间,向客户提供两种优惠方案:①买一件夹克送一件T恤;②夹克和T恤都按定价的80%付款.现某客户要到该服装厂购买夹克30件,T件(30).

1)若该客户按方案①购买,需付款    元(用含x的代数式表示);

若该客户按方案②购买,需付款    元(用含x的代数式表示);

2)若=40,通过计算说明按方案①、方案②哪种方案购买较为合算?

3)若两种优惠方案可同时使用,当=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.

(1)求∠DCE的度数;

(2)若AB=4,CD=3AD,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与x轴相交于A3,0、B1,0两点,与y轴相交于点C0,3,点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D

1求D点坐标;

2求二次函数的解析式;

3根据图象直接写出使一次函数值小于二次函数值的x的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算;

123_____

2)﹣2+|2|_____

3)﹣(﹣16)=_____

4_____

52a+a_____

6_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知正方形ABCDBE平分DBC且交CD边于点EBCE绕点C顺时针旋转到DCF的位置并延长BEDF于点G

1求证:BDG∽△DEG

2EGBG=4BE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点分别是边的中点,延长到点,使,得四边形.若使四边形是正方形,则应在中再添加一个条件为__________.

查看答案和解析>>

同步练习册答案