【题目】定义:若以一条线段为对角线作正方形,则称该正方形为这条线段的“对角线正方形”.例如,图①中正方形ABCD即为线段BD的“对角线正方形”.如图②,在△ABC中,∠ABC=90°,AB=3cm,BC=4cm,点P从点C出发,沿折线CA﹣AB以5cm/s的速度运动,当点P与点B不重合时,作线段PB的“对角线正方形”,设点P的运动时间为t(s),线段PB的“对角线正方形”的面积为S(cm2).
(1)如图③,借助虚线的小正方形网格,画出线段AB的“对角线正方形”.
(2)当线段PB的“对角线正方形”有两边同时落在△ABC的边上时,求t的值.
(3)当点P沿折线CA﹣AB运动时,求S与t之间的函数关系式.
(4)在整个运动过程中,当线段PB的“对角线正方形”至少有一个顶点落在∠A的平分线上时,直接写出t的值.
【答案】(1)见解析;(2);(3)S=;
(4)t的值为s 或1s或s
【解析】试题分析:(1)t=0时,正方形的对角线为4,由此即可求出面积.
(2)如图1中,当线段PB的“对角线正方形”有两边同时落在△ABC的边上时,设正方形的边长为x,由PE∥AB,可得 ==,解得x=,再求出PC的长即可解决问题.
(3)分两种情形分别求解①如图2中,当0≤t≤1时,作PH⊥BC于H.求出PB2即可.②如图3中,当1<t<时,求出PB2即可.
(4)分三种情形讨论①如图4中,当D、E在∠BAC的平分线上时.②当点P运动到点A时,满足条件,此时t=1s.③如图5中,当点E在∠BAC的角平分线上时,分别求解即可.
试题解析:解:(1)线段AB的“对角线正方形”如图所示:
(2)如图1中,当线段PB的“对角线正方形”有两边同时落在△ABC的边上时,设正方形的边长为x.∵PE∥AB,∴=,∴=,解得x=,∴PE=,CE=4﹣=,∴PC==,∴t==s;
(3)①如图2中,当0≤t≤1时,作PH⊥BC于H.
∵PC=5t,则HC=4t,PH=3t.在Rt△PHB中,PB2=PH2+BH2=(3t)2+(4﹣4t)2=25t2﹣32t+16,∴S=PB2=t2﹣16t+8.
②如图3中,当1<t<时,∵PB=8﹣5t,∴S=PB2=t2﹣40t+32.
综上所述:S=;
(4)①如图4中,当D、E在∠BAC的平分线上时,易知AB=AP=3,PC=2,∴t=s.
②当点P运动到点A时,满足条件,此时t=1s.
③如图5中,当点E在∠BAC的角平分线上时,作EH⊥BC于H.
易知EB平分∠ABC,∴点E是△ABC的内心,四边形EOBH是正方形,OB=EH=EO=BH==1(直角三角形内切圆半径公式),∴PB=2OB=2,∴AP=1,∴t=s.综上所述:在整个运动过程中,当线段PB的“对角线正方形”至少有一个顶点落在∠CAB的平分线上时,t的值为 s 或1s或 s;
科目:初中数学 来源: 题型:
【题目】某班同学为了解2019年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行整理如下:
月均用水量x(t) | 频数(户) | 频率 |
6 | 0.12 | |
0.24 | ||
16 | 0.32 | |
10 | 0.20 | |
4 | ||
2 | 0.04 |
请解答下列问题:
(1)把上面的频数分布表和频数分布直方图补充完整;
(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;
(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,四边形OABC为矩形,A(6,0),C(0,3),点M在边OA上,且M(4,0),P、Q两点同时从点M出发,点P沿x轴向右运动;点Q沿x轴先向左运动至原点O后,再向右运动到点M停止,点P随之停止运动.P、Q两点运动的速度分别为每秒1个单位、每秒2个单位.以PQ为一边向上作正方形PRLQ.设点P的运动时间为t(秒),正方形PRLQ与矩形OABC重叠部分(阴影部分)的面积为S(平方单位).
(1)用含t的代数式表示点P的坐标.
(2)分别求当t=1,t=3时,线段PQ的长.
(3)求S与t之间的函数关系式.
(4)直接写出L落在第一象限的角平分线上时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)图(1)是一个长为2m,宽为2n的矩形,把此矩形沿图中虚线用剪刀均分为四个小长方形,然后按图(2)的形状拼成一个大正方形.请问:这两个图形的什么量不变?
(2)把所得的大正方形面积比原矩形的面积多出的阴影部分的面积用含m,n的代数式表示为(m-n)2或m2-2mn+n2 .
(3)由前面的探索可得出的结论是:在周长一定的矩形中,当 时,面积最大.
(4)若矩形的周长为24cm,则当边长为多少时,该图形的面积最大?最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读计算:
阅读下列各式:,,……
回答下列三个问题:
(1)验证:(5×0.2)10=__________;510×0.210=__________.
(2)通过上述验证,归纳得出: =__________;=__________.
(3)请应用上述性质计算:
①
②.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解下面内容,并解决问题:
善于思考的小明在学习《实数》一章后,自己探究出了下面的两个结论:
①,,和都是9×4的算术平方根,
而9×4的算术平方根只有一个,所以=.
②,,和都是9×16的算术平方根,
而9×16的算术平方根只有一个,所以 .
请解决以下问题:
(1)请仿照①帮助小明完成②的填空,并猜想:一般地,当a≥0,b≥0时,与、之间的大小关系是怎样的?
(2)再举一个例子,检验你猜想的结果是否正确.
(3)运用以上结论,计算:的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,网格中的每个小正方形的边长均为1个单位长度,Rt△ABC的顶点均在格点上,建立平面直角坐标系后,点A(4,3),点B(1,1),点C(4,1).
(1)画出Rt△ABC关于y轴对称的Rt△A1B1C1,(点A、B、C的对称点分别是A1、B1、C1),直接写出A1的坐标;
(2)将Rt△ABC向下平移4个单位,得到Rt△A2B2C2(点A、B、C的对应点分别是A2、B2、C2),画出Rt△A2B2C2 ,连接A1C2,直接写出线段A1C2的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=﹣x+3与x轴相交于点B,与y轴相交于点A,点E为线段AB中点,∠ABO的平分线BD与y轴相较于点D,点A、C关于点O对称.
(1)求线段DE的长;
(2)一个动点P从点D出发,沿适当的路径运动到直线BC上的点F,再沿射线CB方向移动2个单位到点G,最后从点G沿适当的路径运动到点E处,当P的运动路径最短时,求此时点G的坐标;
(3)将△ADE绕点A顺时针方向旋转,旋转角度α(0<α≤180°),在旋转过程中DE所在的直线分别与直线BC、直线AC相交于点M、点N,是否存在某一时刻使△CMN为等腰三角形,若存在,请求出CM的长,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com