精英家教网 > 初中数学 > 题目详情
5.有理数m等于它的倒数,有理数n等于它的相反数,则m101+n102=±1.

分析 利用倒数及相反数的性质求出m与n的值,代入原式计算即可得到结果.

解答 解:由题意得:m=±1,n=0,
则原式=±1.
故答案为:±1.

点评 此题考查了代数式求值,相反数及倒数,找出相反数及倒数等于本身的数是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

15.在线段AB上取一点C,使AC=$\frac{1}{3}$AB,再在线段AB的延长线上取一点D,使DB=$\frac{1}{4}$AD,则线段BC的长度是线段DC长度的(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,点A,B,C在⊙O上,若∠C=35°,则∠AOB=(  )
A.17.5°B.35°C.60°D.70°

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.如果a的倒数是-1,那么a2016=(  )
A.1B.-1C.2016D.-2016

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.对数轴上的点P进行如下操作:先把点P表示的数乘以-2,再把所得数对应的点向左运动一个单位,得到点P的对应点P1
(1)点A,B在数轴上,对点A、B进行上述操作后得到点A1、B1,如图,若点A表示的数是1,则点A1表示的数是-3;若点B1表示的数是7,则点B表示的数是-4;
(2)若数轴上的点M经过上述操作后,位置不变,则点M表示的数是-$\frac{1}{3}$.并在数轴上画出点M的相反数N的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.选择你认为合适的方法计算:
(1$\frac{3}{4}$$-\frac{7}{8}$$-\frac{7}{12}$)×(-1$\frac{1}{7}$)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.下列算式:①(-5)+(+3)=-8   ②-(-2)3=6   ③(+$\frac{5}{6}$)+(-$\frac{1}{6}$)=$\frac{2}{3}$   ④-3÷(-$\frac{1}{3}$)=9其中正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.利用因式分解计算
(1)$\frac{201{4}^{3}-2×201{4}^{2}-2012}{201{4}^{3}+201{4}^{2}-2015}$;
(2)(-2)2009+(-2)2010=22009

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.下列是小朋友用火柴棒拼出的一组图形:

仔细观察,找出规律,解答下列各题:
(1)第四个图中共有13根火柴棒,第六个图中共有19根火柴棒;
(2)按照这样的规律,第n个图形中共有3n+1根火柴棒(用含n的代数式表示);
(3)按照这样的规律,某个图形中可以有2017根火柴棒吗?

查看答案和解析>>

同步练习册答案