精英家教网 > 初中数学 > 题目详情

【题目】水利部确定每年的3月22日至28日为“中国水周”(1994年以前为7月1日至7日),从1991年起,我国还将每年5月的第二周作为城市节约用水宣传周.某社区为了进一步提高居民珍惜水、保护水和水忧患意识,提倡节约用水,从本社区5000户家庭中随机抽取100户,调查他们家庭每月的平均用水量,并将调查的结果绘制成如下的两幅不完整的统计图表:

用户月用水量频数分布表

平均用水量(吨)

频数

频率

3~6吨

10

0.1

6~9吨

m

0.2

9~12吨

36

0.36

12~15吨

25

n

15~18吨

9

0.09

请根据上面的统计图表,解答下列问题:

(1)在频数分布表中:m=__ __,n=__ __;

(2)根据题中数据补全频数直方图;

(3)如果自来水公司将基本月用水量定为每户每月12吨,不超过基本月用水量的部分享受基本价格,超出基本月用水量的部分实行加价收费,那么该社区用户中约有多少户家庭能够全部享受基本价格?

【答案】(1)20,0.25;(2)补全频数分布直方图见解析;(3)该社区用户中约有3300户家庭能够全部享受基本价格.

【解析】

(1)根据频率=频数÷数据总数,可得到m÷100=0.2,可求得m=20,然后利用频率=频数÷数据总数可求得n的值;

(2)根据(1)中的结果画出频数分布直方图即可;

(3)求得100户家庭中能够全部享受基本价格的频数,然后再乘5000即可.

(1)m=100×0.2=20,n=25÷100=0.25.

(2)补全频数分布直方图如图:

(3)×5000=3300(户).

所以该社区用户中约有3300户家庭能够全部享受基本价格.

故答案为:(1)20,0.25;(2)见解析;(3)3300户.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

数学活动课上,老师出了一道作图问题:如图,已知直线l和直线l外一点P.用直尺和圆规作直线PQ,使PQ⊥l于点Q.”

小艾的作法如下:

(1)在直线l上任取点A,以A为圆心,AP长为半径画弧.

(2)在直线l上任取点B,以B为圆心,BP长为半径画弧.

(3)两弧分别交于点P和点M

(4)连接PM,与直线l交于点Q,直线PQ即为所求.

老师表扬了小艾的作法是对的.

请回答:小艾这样作图的依据是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,拦水坝的横断面为梯形ABCD,AB∥CD,坝顶宽DC为6米,坝高DG为2米,迎水坡BC的坡角为30°,坝底宽AB为(8+2 )米.
(1)求背水坡AD的坡度;
(2)为了加固拦水坝,需将水坝加高2米,并且保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB的宽度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线AC,BD相交于点O,AE=CF.

(1)求证:△BOE≌△DOF;

(2)连接DE,BF,若BD⊥EF,试探究四边形EBFD的形状,并对结论给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,∠DCE=118°,∠AEC的角平分线EF与GF相交于点F,∠BGF=132°,则∠F的度数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):
(1)作△ABC的外心O;
(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】雾霾天气已经成为人们普遍关注的话题,雾霾不仅仅影响人们的出行,还影响着人们的健康,太原市会持续出现雾霾天气吗?在2016年2月周末休息期间,某校九年级1班综合实践小组的同学以“雾霾天气的主要成因”为主题,随机调查了太原市部分市民的观点,并对调查结果进行了整理,绘制了如下不完整的统计图表,观察并回答下列问题:

类别

雾霾天气的主要成因

百分比

A

工业污染

45%

B

汽车尾气排放

m

C

城中村燃煤问题

15%

D

其他(绿化不足等)

n


(1)请你求出本次被调查市民的人数及m,n的值,并补全条形统计图;
(2)若太原市有300万人口,请你估计持有A,B两类看法的市民共有多少人?
(3)学校要求小颖同学在A,B,C,D这四个雾霾天气的主要成因中,随机抽取两项作为课题研究的项目进行考察分析,请用画树状图或列表的方法,求出小颖同学刚好抽到B(汽车尾气排放),C(城中村燃煤问题)的概率.(用A,B,C,D表示各项目)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读与思考 婆罗摩笈多(Brahmagupta),是一位印度数学家和天文学家,书写了两部关于数学和天文学的书籍,他的一些数学成就在世界数学史上有较高的地位,他的负数概念及加减法运算仅晚于中国《九章算术》,而他的负数乘除法法则在全世界都是领先的,他还提出了著名的婆罗摩笈多定理,该定理的内容及部分证明过程如下:
已知:如图1,四边形ABCD内接于⊙O,对角线AC⊥BD于点P,PM⊥AB于点M,延长MP交CD于点N,求证:CN=DN.
证明:在△ABP和△BMP中,∵AC⊥BD,PM⊥AB,
∴∠BAP+∠ABP=90°,∠BPM+∠MBP=90°.
∴∠BAP=∠BPM.
∵∠DPN=∠BPM,∠BAP=∠BDC.
∴…

(1)请你阅读婆罗摩笈多定理的证明过程,完成剩余的证明部分.
(2)已知:如图2,△ABC内接于⊙O,∠B=30°,∠ACB=45°,AB=2,点D在⊙O上,∠BCD=60°,连接AD,与BC交于点P,作PM⊥AB于点M,延长MP交CD于点N,则PN的长为

查看答案和解析>>

同步练习册答案