精英家教网 > 初中数学 > 题目详情

【题目】已知四边形的对角线相交于点,则下列条件中不能判定四边形为平行四边形的是( )

A. B. C. D.

【答案】B

【解析】

选项A,由“一组对边平行且相等的四边形是平行四边形”可得出四边形ABCD是平行四边形;选项B,由ABCDADBC无法证出四边形ABCD是平行四边形.选项C,由“两组对边分别平行的四边形是平行四边形”可得出四边形ABCD是平行四边形;选项D,由ABCD可得出∠BAO=∠DCO、∠ABO=∠CDO,结合OAOC可证出△ABO≌△CDOAAS),根据全等三角形的性质可得出ABCD,由“一组对边平行且相等的四边形是平行四边形”可得出四边形ABCD是平行四边形;由此即可解答.

选项A,∵ABCDABCD,∴四边形ABCD是平行四边形;

选项B,由ABCDADBC无法证出四边形ABCD是平行四边形.

选项C,∵ABCDADBC,∴四边形ABCD是平行四边形;

选项D,∵ABCD,∴∠BAO=∠DCO,∠ABO=∠CDO

在△ABO和△CDO中,

∴△ABO≌△CDOAAS),

ABCD

∴四边形ABCD是平行四边形;

故选B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】用总长10m的铝合金材料做一个如图所示的窗框(不计损耗),窗框的上部是等腰直角三角形,下部是两个全等的矩形,窗框的总面积为3m2(材料的厚度忽略不计).若设等腰直角三角形的斜边长为xm,下列方程符合题意的是(  )

A. B.

C. =3D. =3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线 经过 两点.

1)求抛物线的解析式;

2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;

3)如图,已知点N在抛物线上,且 .

①求出点N的坐标;

②在(2)的条件下,直接写出所有满足 的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,抛物线yx轴交于ACAC的左侧),点B在抛物线上,其横坐标为1,连接BCBO,点FOB中点.

1)求直线BC的函数表达式;

2)若点D为抛物线第四象限上的一个动点,连接BDCD,点Ex轴上一动点,当BCD的面积的最大时,求点D的坐标,及|FEDE|的最大值;

3)如图2,若点G与点B关于抛物线对称轴对称,直线BGy轴交于点M,点N是线段BG上的一动点,连接NFMF,当∠NFO3BNF时,连接CN,将直线BO绕点O旋转,记旋转中的直线BOBO,直线BO与直线CN交于点Q,当OCQ为等腰三角形时,求点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图①,在等腰直角三角形中,DE分别在上,且,此时有

(1)如图①中 绕点A旋转至如图②时上述结论是否仍然成立?若成立,请证明;若不成立,请说明理由.

(2)将图①中的绕点A旋转至DE与直线AC垂直,直线BDCE于点F,若,请画出图形,并求出BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“驴友”小明分三次从M地出发沿着不同的线路线,B线,C线N在每条线路上行进的方式都分为穿越丛林、涉水行走和攀登这三种他涉水行走4小时的路程与攀登6小时的路程相等线、C线路程相等,都比A线路程多A线总时间等于C线总时间的,他用了3小时穿越丛林、2小时涉水行走和2小时攀登走完A线,在B线中穿越丛林、涉水行走和攀登所用时间分别比A线上升了,若他用了x小时穿越丛林、y小时涉水行走和z小时攀登走完C线,且xyz都为正整数,则______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个直角三角形纸片OAB,其中AOB=90°,OA=2OB=4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D

1)若折叠后使点B与点A重合,求点C的坐标;

2)若折叠后点B落在边OA上的点为B,设OB′=xOC=y,试写出y关于x的函数解析式,并确定y的取值范围;

3)若折叠后点B落在边OA上的点为B,且使BD//OB,求此时点C的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知正比例函数yx的图象与反比例函数y的图象交于Aa,-2),B两点.

1)求反比例函数的表达式和点B的坐标;

2P是第一象限内反比例函数图象上一点,过点Py轴的平行线,交直线AB于点C,连接PO,若POC的面积为3,求点P的坐标.

查看答案和解析>>

同步练习册答案