【题目】我们知道:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧;平分弧的直径垂直平分这条弧所对的弦.你可以利用这一结论解决问题:
如图,点P在以MN(南北方向)为直径的⊙O上,MN=8,PQ⊥MN交⊙O于点Q,垂足为H,PQ≠MN,弦PC、PD分别交MN于点E、F,且PE=PF.
(1)比较与的大小;
(2)若OH=2,求证:OP∥CD;
(3)设直线MN、CD相交所成的锐角为α,试确定cosα=时,点P的位置.
【答案】(1) =;(2)点P到MN的距离为2.
【解析】
试题分析:(1)根据等腰三角形的性质,由PE=PF,PH⊥EF可判断PH平分∠FPE,然后根据圆中角定理得到=;(2)连结CD、OP、OQ,OQ交CD于B,如图,先计算出PH=2,则可判断△OPH为等腰直角三角形得到∠OPQ=45°,再判断△OPQ为等腰直角三角形得到∠POQ=90°,然后根据垂径的推理由=得到OQ⊥CD,则根据平行线的判定方法得OP∥CD;(3)直线CD交MN于A,如图,由特殊角的三角函数值得∠α=30°,即直线MN、CD相交所成的锐角为30°,利用OB⊥CD得到∠AOB=60°,则∠POH=60°,然后在Rt△POH中利用正弦的定义计算出PH即可.
试题解析:(1)解:∵PE=PF,PH⊥EF,
∴PH平分∠FPE,
∴∠DPQ=∠CPQ,
∴=;
(2)证明:连结CD、OP、OQ,OQ交CD于B,如图,
∵OH=2,OP=4,
∴PH==2,
∴△OPH为等腰直角三角形,
∴∠OPQ=45°,
而OP=OQ,
∴△OPQ为等腰直角三角形,
∴∠POQ=90°,
∴OP⊥OQ,
∵=,
∴OQ⊥CD,
∴OP∥CD;
(3)解:直线CD交MN于A,如图,
∵cosα=,
∴∠α=30°,即直线MN、CD相交所成的锐角为30°,
而OB⊥CD,
∴∠AOB=60°,
∵OH⊥PQ,
∴∠POH=60°,
在Rt△POH中,∵sin∠POH=,
∴PH=4sin60°=2,
即点P到MN的距离为2.
科目:初中数学 来源: 题型:
【题目】运用分式方程,解决下面问题:
为改善城市排水系统,某市需要新铺设一段全长为3 000m的排水管道。为了减少施工对城市交通的影响,实际施工时每天的工效是原计划的1.2倍,结果提前5天完成这一任务.
(1)这个工程队原计划每天铺设管道多少m?
(2)填空:在这项工程中,如果要求工程队提前6天完成任务,那么实际施工时每天的工效比原计划增加__________(填百分数,不写过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】南宁东高铁火车站位于南宁青秀区凤岭北路,火车站总建筑面积约为267000平方米,其中数据267000用科学记数法表示为( )
A.26.7×104
B.2.67×104
C.2.67×105
D.0.267×106
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“对顶角相等”,这个命题改写成“如果……那么……”的形式应该为________________________________________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在□ABCD中,E、F分别为边AB、CD的中点,连接DE、BF、BD.
(1)求证:△ADE≌△CBF;
(2)当AD⊥BD时,请你判断四边形BFDE的形状,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com