精英家教网 > 初中数学 > 题目详情
如图,抛物线交坐标轴于A、B、D三点,过点D作轴的平行线交抛物线于点C.直线l过点E(0,-),且平分梯形ABCD面积.
⑴ 直接写出A、B、D三点的坐标;
⑵ 直接写出直线l的解析式;
⑶ 若点P在直线l上,且在x轴上方,tan∠OPB=,求点P的坐标.
⑴点A(-2,0),点B(8,0),点D(0,);⑵ 直线l:;⑶(7,7).

试题分析:⑴令,解之即可求得A,B的坐标;在中,令,解之即可求得D的坐标.
⑵作CF⊥x轴,F为垂足.先求出矩形OFCD的中心坐标M(3,),则直线ME即为所求直线l.[
⑶若点P为所求的点,画出△POB的外接圆⊙G,并作GH⊥x轴,H为垂足,则∠OGH=∠HGB=∠OPB;
作PN⊥x轴,GN∥x轴,交于点N,则GN=3,PN=4,因此点P的坐标为(7,7).
⑴ 点A(-2,0),点B(8,0),点D(0,).
⑵ 直线l:.
⑶ 如图,若点P为所求的点,画出△POB的外接圆⊙G,并作GH⊥x轴,H为垂足,则∠OGH=∠HGB=∠OPB.
∵OH=HB=4,tan∠OGH=tan∠HGB=tan∠OPB=
∴GH=3,GO=GB=GP=5,即⊙G的圆心G坐标为(4,3),半径r=5.
将点G坐标代入直线l解析式发现,点G恰巧在直线l上.
设直线l与x轴交于点Q,不难计算GH:QH=4:3.
作PN⊥x轴,GN∥x轴,交于点N,则GN=3,PN=4,
因此点P的坐标为(7,7).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

将抛物线y=(x-1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为(  )
A.y=(x-2)2B.y=(x-2)2+6C.y=x2+6D.y=x2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在直角坐标系xOy中,已知点P是反比例函数y=(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:
①求出点A,B,C的坐标.
②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的?若存在,试求出所有满足条件的M点的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,点A坐标为(-2,0),点B坐标为(0,2),点E为线段AB上的动点(点E不与点A,B重合),以E为顶点作∠OET=45°,射线ET交线段OB于点F,C为y轴正半轴上一点,且OC=AB,抛物线y=x2+mx+n的图象经过A,C两点.

(1)求此抛物线的函数表达式;
(2)求证:∠BEF=∠AOE;
(3)当△EOF为等腰三角形时,求此时点E的坐标;
(4)在(3)的条件下,当直线EF交x轴于点D,P为(1)中抛物线上一动点,直线PE交x轴于点G,在直线EF上方的抛物线上是否存在一点P,使得△EPF的面积是△EDG面积的()倍.若存在,请直接写出点P坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平面直角坐标系xOy中,已知抛物线(0≤x≤3)在x轴上方的部分,记作C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,C2与x 轴交于另一点A2.请继续操作并探究:将C2绕点A2旋转180°得C3,与x 轴交于另一点A3;将C3绕点A2旋转180°得C4,与x 轴交于另一点A4,这样依次得到x轴上的点A1,A2,A3,…,An,…,及抛物线C1,C2,…,Cn,….则点A4的坐标为         ;Cn的顶点坐标为               (n为正整数,用含n的代数式表示) .

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

把二次函数y=ax2+bx+c的图像向左平移4个单位或向右平移1个单位后都会经过原点,则二次函数图像的对称轴与x轴的交点是
A.(-2.5,0)B.(2.5,0)C.(-1.5,0)D.(1.5,0)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,二次函数的图象,记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……如此进行下去,直至得C14. 若P(27,m)在第14段图象C14上,则m=       

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如果二次函数的最小值为负数,则m的取值范围是(   )
A.m﹤1B.m﹥1C.m≤1D.m≥1

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

若二次函数y=x2﹣2x+c的图象与y轴的交点为(0,﹣3),则此二次函数有(     )
A.最小值为-2B.最小值为-3C.最小值为-4D.最大值为-4

查看答案和解析>>

同步练习册答案