精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD是菱形,对角线AC、BD相交于点O,DH⊥AB于H, 连接OH,求证:∠DHO=∠DCO.

【答案】证明:∵四边形ABCD是菱形, ∴OD=OB,∠COD=90°,
∵DH⊥AB,
∴OH= BD=OB,
∴∠OHB=∠OBH,
又∵AB∥CD,
∴∠OBH=∠ODC,
在Rt△COD中,∠ODC+∠DCO=90°,
在Rt△DHB中,∠DHO+∠OHB=90°,
∴∠DHO=∠DCO.

【解析】根据菱形的对角线互相平分可得OD=OB,再根据直角三角形斜边上的中线等于斜边的一半可得OH=OB,然后根据等边对等角求出∠OHB=∠OBH,根据两直线平行,内错角相等求出∠OBH=∠ODC,然后根据等角的余角相等证明即可.
【考点精析】根据题目的已知条件,利用菱形的性质的相关知识可以得到问题的答案,需要掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知面包店的面包一个15元,小明去此店买面包,结账时店员告诉小明:“如果你再多买一个面包就可以打九折,价钱会比现在便宜45元”,小明说:“我买这些就好了,谢谢.”根据两人的对话,判断结账时小明买了多少个面包?(
A.39
B.40
C.41
D.42

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BD=EC,

(1)说明△BCD与△CAE全等的理由
(2)请判断△ADE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=4x2﹣2ax+b与x轴相交于A(x1,0),B(x2,0)(0<x1<x2)两点,与y轴交于点C.

(1)设AB=2,tanABC=4,求该抛物线的解析式;

(2)在(1)中,若点D为直线BC下方抛物线上一动点,当BCD的面积最大时,求点D的坐标;

(3)是否存在整数a,b使得1<x1<2和1<x2<2同时成立,请证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线是常数)经过点.

(1)求该抛物线的解析式和顶点坐标;

(2)P(m,t)为抛物线上的一个动点,关于原点的对称点为.

当点落在该抛物线上时,求的值;

当点落在第二象限内,取得最小值时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一艘海轮位于灯塔的北偏东方向,距离灯塔120海里的处,它沿正南方向航行一段时间后,到达位于灯塔的南偏东方向上的处,求的长(结果取整数).

参考数据:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知线段b是线段a、c的比例中项,且a=2 cm,b=4 cm,那么c=cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读对学生的成长有着深远的影响,某中学为了解学生每周课余阅读的时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表.

组别

时间(小时)

频数(人数)

频率

A

0≤t≤0.5

6

0.15

B

0.5≤t≤1

a

0.3

C

1≤t≤1.5

10

0.25

D

1.5≤t≤2

8

b

E

2≤t≤2.5

4

0.1

合计

1

请根据图表中的信息,解答下列问题:

(1)表中的a= ,b= ,中位数落在 组,将频数分布直方图补全;

(2)估计该校2000名学生中,每周课余阅读时间不足0.5小时的学生大约有多少名?

(3)E组的4人中,有1名男生和3名女生,该校计划在E组学生中随机选出两人向全校同学作读书心得报告,请用画树状图或列表法求抽取的两名学生刚好是1名男生和1名女生的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:
把两个相同的数连接在一起就得到一个新数,我们把它称为“连接数”,例如:234234,3939…等,都是连接数,其中,234234称为六位连接数,3939称为四位连接数.
(1)请写出一个六位连接数 , 它(填“能”或“不能”)被13整除.
(2)是否任意六位连接数,都能被13整除,请说明理由.
(3)若一个四位连接数记为M,它的各位数字之和的3倍记为N,M﹣N的结果能被13整除,这样的四位连接数有几个?

查看答案和解析>>

同步练习册答案