【题目】抛物线y=4x2﹣2ax+b与x轴相交于A(x1,0),B(x2,0)(0<x1<x2)两点,与y轴交于点C.
(1)设AB=2,tan∠ABC=4,求该抛物线的解析式;
(2)在(1)中,若点D为直线BC下方抛物线上一动点,当△BCD的面积最大时,求点D的坐标;
(3)是否存在整数a,b使得1<x1<2和1<x2<2同时成立,请证明你的结论.
【答案】(1)y=4x2﹣16x+12;(2)P(,﹣3).(3)不存在.理由见解析.
【解析】
试题分析:(1)由tan∠ABC=4,可设B(m,0),则A(m-2,0),C(0,4m),可得抛物线的解析式为y=4(x-m)(x-m+2),把C点坐标代入即可求解;
(2)设P(m,4m2-16m+12).作PH∥OC交BC于H,根据SΔPBC=SΔPHC+SΔPHB,构建二次函数,求解即可;
(3)不存在.假设存在,由题意知, 且1<﹣<2,求出a的值,解不等式组即可得解.
试题解析:(1)∵tan∠ABC=4
∴可以假设B(m,0),则A(m﹣2,0),C(0,4m),
∴可以假设抛物线的解析式为y=4(x﹣m)(x﹣m+2),
把C(0,4m)代入y=4(x﹣m)(x﹣m+2),得m=3,
∴抛物线的解析式为y=4(x﹣3)(x﹣1),
∴y=4x2﹣16x+12,
(2)如图,设P(m,4m2﹣16m+12).作PH∥OC交BC于H.
∵B(3,0),C(0,12),
∴直线BC的解析式为y=﹣4x+12,
∴H(m,﹣4m+12),
∴S△PBC=S△PHC+S△PHB=(﹣4m+12﹣4m2+16m﹣12)3=﹣6(m﹣)2+,
∵﹣6<0,
∴m=时,△PBC面积最大,
此时P(,﹣3).
(3)不存在.
理由:假设存在.由题意可知,
且1<﹣<2,
∴4<a<8,
∵a是整数,
∴a=5 或6或7,
当a=5时,代入不等式组,不等式组无解.
当a=6时,代入不等式组,不等式组无解.
当a=7时,代入不等式组,不等式组无解.
综上所述,不存在整数a、b,使得1<x1<2和1<x2<2同时成立.
科目:初中数学 来源: 题型:
【题目】【探究函数y=x+的图象与性质】
(1)函数y=x+的自变量x的取值范围是 ;
(2)下列四个函数图象中函数y=x+的图象大致是 ;
(3)对于函数y=x+,求当x>0时,y的取值范围.
请将下列的求解过程补充完整.
解:∵x>0
∴y=x+=()2+()2=(﹣)2+
∵(﹣)2≥0
∴y≥ .
[拓展运用]
(4)若函数y=,则y的取值范围 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为4的正方形ABCD中,对角线AC,BD相交于点O,点E是AD边上一点,连接CE,把△CDE沿CE翻折,得到△CPE,EP交AC于点F,CP交BD于点G,连接PO,若PO∥BC,则四边形OFPG的面积是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com