分析 如图,延长DA、CE交于点M.假设AE=3a,GC=2a,想办法用a的代数式表示AM、CF、FM,由$\frac{CG}{AM}$=$\frac{CF}{FM}$,列出方程即可解决问题.
解答 解:如图,延长DA、CE交于点M.![]()
∵GC=$\frac{2}{3}$AE,可以假设AE=3a,GC=2a,
∵四边形ABCD 是正方形,
∴AB=BC=CD=AD=4,AB∥CD,BC∥AD,
∴$\frac{BC}{AM}$=$\frac{BE}{AE}$,
∴$\frac{4}{AM}$=$\frac{4-3a}{3a}$,
∴AM=$\frac{12a}{4-3a}$,
由△CDF∽△ECB,得$\frac{DC}{EC}$=$\frac{CF}{BE}$,
∴CF=$\frac{4(4-3a)}{\sqrt{{4}^{2}+(4-3a)^{2}}}$,
由△MDF∽△CEB,得$\frac{FM}{BC}$=$\frac{DM}{CE}$,
∴FM=$\frac{64}{(4-3a)\sqrt{{4}^{2}+(4-3a)^{2}}}$,
∵CG∥AM,
∴$\frac{CG}{AM}$=$\frac{CF}{FM}$,
∴$\frac{2a}{\frac{12a}{4-3a}}$=$\frac{\frac{4(4-3a)}{\sqrt{{4}^{2}+(4-3a)^{2}}}}{\frac{64}{(4-3a)\sqrt{{4}^{2}+(4-3a)^{2}}}}$,
解得a=$\frac{4}{9}$,
在Rt△GBE中,∵BG=4-$\frac{8}{9}$=$\frac{28}{9}$,BE=4-$\frac{12}{9}$=$\frac{24}{9}$,
∴GE=$\sqrt{B{G}^{2}+B{E}^{2}}$=$\sqrt{(\frac{28}{9})^{2}+(\frac{24}{9})^{2}}$=$\frac{4}{9}$$\sqrt{85}$,
故答案为$\frac{4}{9}$$\sqrt{85}$.
点评 本题考查正方形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会利用参数,构建方程解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com