精英家教网 > 初中数学 > 题目详情

【题目】如图所示,已知正方形的面积为,点在函数的图象上,点是函数的图象上动点,过点分别作轴、轴的垂线,垂足分别为,若设矩形和正方形不重合的两部分的面积和为

点坐标和的值;

写出关于的函数关系和的最大值.

【答案】 时,取得最大值,此时最大值为

【解析】

(1)由四边形OABC为正方形,面积为9,求出正方形的边长为3,得到AB与OA为3,由B在第一象限确定出B的坐标,将B坐标代入反比例解析式中,即可求出k的值;

(2)由P的坐标,表示PE与OE,由OEOA表示出AE的长,矩形OEPF和正方形OABC不重合的两部分为矩形,面积为PE与AE乘积,再由P在反比例函数图象上,将P坐标代入反比例解析式,用m表示出n,列出S关于m的函数关系式,由m的范围,得出反比例函数p=为减函数,可得出S为关于m的增函数,将m的最大值9代入,即可求出S的最大值.

∵正方形的面积为

∴正方形的边长为,即

点坐标为

又∵点是函数的图象上的一点,

,得到点在点的右侧,则

时,反比例函数为减函数,为关于的增函数,

∴当时,取得最大值,此时最大值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,C=90°,AC=4,BC=3,O是ABC的内心,以O为圆心,r为半径的圆与线段AB有交点,则r的取值范围是( )

A.r≥1 B.1≤r≤ C.1≤r≤ D.1≤r≤4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程kx2+2x﹣1=0有实数根,

(1)求k的取值范围;

(2)当k=2时,请用配方法解此方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A、C的坐标分别为(0,8)、(6,0),以AC为直径作⊙O,交坐标轴于点B,点D是⊙O 上一点,且,过点DDEBC,垂足为E.

(1)求证:CD平分∠ACE;

(2)判断直线ED与⊙O的位置关系,并说明理由;

(3)求线段CE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:方程组的解x为非正数,y为负数.

(1)a的取值范围;

(2)化简|a3||a2|

(3)a的取值范围中,当a为何整数时,不等式2axx2a1的解为x1.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们把形如x2=a(其中a是常数且a≥0)这样的方程叫做x的完全平方方程.

x2=9,(3x﹣2)2=25,都是完全平方方程.

那么如何求解完全平方方程呢?

探究思路:

我们可以利用乘方运算把二次方程转化为一次方程进行求解.

如:解完全平方方程x2=9的思路是:由(+3)2=9,(﹣3)2=9可得x1=3,x2=﹣3.

解决问题:

(1)解方程:(3x﹣2)2=25.

解题思路:我们只要把 3x﹣2 看成一个整体就可以利用乘方运算进一步求解方程了.

解:根据乘方运算,得3x﹣2=5 3x﹣2=   

分别解这两个一元一次方程,得x1=,x2=﹣1.

(2)解方程

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O半径为1,AB是⊙O的直径,C是⊙O上一点,连接AC,⊙O外的一点D在直线AB上,若AC=,OB=BD.

(1)求证:CD是⊙O的切线;

(2)求阴影部分的面积.(结果保留π)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形的对角线相交于点的角平分线分别交两点,若,则线段的长为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示在平面直角坐标系中A,B的坐标分别为A(a,0),B(b,0),a,

b满足 |a+2|+=0,C的坐标为(0,3).

(1)a,b的值及S三角形ABC

(2)若点Mx轴上S三角形ACMS三角形ABC试求点M的坐标.

查看答案和解析>>

同步练习册答案