科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,∠AOC的平分线交AB于点D,E为BC的中点,已知A(0,4)、C(5,
0),二次函数y=
x2+bx+c的图象抛物线经过A,C两点.
(1)求该二次函数的表达式;
(2)F、G分别为x轴,y轴上的动点,顺次连接D、E、F、G构成四边形DEFG,求四边形DEFG周长的最小值;
(3)抛物线上是否在点P,使△ODP的面积为12?若存在,求出点P的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,反比例函数y=
的图像与一次函数y=
x的图像交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图像上的动点,且在直线AB的上方.
⑴若点P的坐标是(1,4),直接写出k的值和△PAB的面积;
⑵设直线PA、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;
⑶设点Q是反比例函数图像上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠PAQ与∠PBQ的大小,并说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
阅读材料:用配方法求最值.
已知x,y为非负实数,
∵x+y﹣2
≥0
∴x+y≥2
,当且仅当“x=y”时,等号成立.
示例:当x>0时,求y=x+
+4的最小值.
+4=6,当x=
,即x=1时,y的最小值为6.
(1)尝试:当x>0时,求y=
的最小值.
(2)问题解决:随着人们生活水平的快速提高,小轿车已成为越来越多家庭的交通工具,假设某种小轿车的购车费用为10万元,每年应缴保险费等各类费用共计0.4万元,n年的保养、维护费用总和为
万元.问这种小轿车使用多少年报废最合算(即:使用多少年的年平均费用最少,年平均费用=
)?最少年平均费用为多少万元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com