精英家教网 > 初中数学 > 题目详情

【题目】如图所示,已知直线ABCD交于点O是方程的解,也是方程的解,且

1)求的度数.

2)若射线OMOC出发,绕点O的速度顺时针转动,射线ONOD出发,绕点O的速度逆时针第一次转动到射线OE停止,当ON停止时,OM也随之停止.在转动过程中,设运动时间为t,当t为何值时,

3)在(2)的条件下,当ON运动到内部时,下列结论:①不变;②不变,其中只有一个是正确的,请选择并证明.

【答案】(1)30°;(2)30或90;(3)①是正确的,证明详见解析.

【解析】

1)把代入得出关于ab的方程组,得出ab的值,再根据邻补角和垂直的定义即可求出的度数

2)设t秒后,由题意,解方程即可.

3)分别表示出,从而得出结论

1)把代入

,解得:

,则

.∴

,∴

,∴

2)设t秒后

①如图所示,

,∴

.∴

②如图所示,

,∴

.∴

综上所述,,的值为30s90s时,

3)①是正确的,如图所示,设运动时间为ts

是定值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中,BD是它的一条对角线,过AC两点分别作EF为垂足.

1)如图,求证:

2)如图,连接AC,设ACBD交于点O,若.在不添加任何辅助线的情况下,请直接写出图中的所有长度是OE长度2倍的线段.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC在平面直角坐标系xOy中的位置如图所示.

(1)作ABC关于点C成中心对称的A1B1C1

(2)将A1B1C1向右平移3个单位,作出平移后的A2B2C2

(3)在x轴上求作一点P,使PA1+PC2的值最小,并求最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+3a0)经过点A10),B0),且与y轴相交于点C

(1)求这条抛物线的表达式;

(2)求∠ACB的度数;

(3)设点D是所求抛物线第一象限上一点,且在对称轴的右侧,点E在线段AC上,且DEAC,当△DCE与△AOC相似时,求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,直线ab被直线l所截,则图中对顶角有______对,分别是_____________;邻补角有______对,分别是____________;同位角有________对,分别是____________;内错角有________对,分别是____________;同旁内角有______对,分别是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从数轴上的原点开始,先向左移动2cm到达A点,再向左移动4cm到达B点,然后向右移动10cm到达C点.

1)用1个单位长度表示1cm,请你在题中所给的数轴上表示出ABC三点的位置;

2)把点C到点A的距离记为CA,则CA______cm

3)若点B以每秒3cm的速度向左移动,同时AC点以每秒lcm5cm的速度向右移动,设移动时间为tt0)秒,试探究CAAB的值是否会随着t的变化而改变?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】四边形是平行四边形,点边上运动(点不与点重合)

1)如图1,当点运动到边的中点时,连接,若平分,证明:

2)如图2,过点且交的延长线于点,连接.若,在线段上是否存在一点,使得四边形是菱形?若存在,请说明当发,点分别在线段上什么位置时四边形是菱形,并证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,DE是∠ADC的平分线,交BC于点E.

(1)试说明CD=CE;

(2)若BE=CE,∠B=80°,求∠DAE的度数.

查看答案和解析>>

同步练习册答案