精英家教网 > 初中数学 > 题目详情

【题目】已知关于x的一元二次方程2x2﹣(4k+3x+2k2+k0

1)当k取何值时,方程有两个不相等的实数根?

2)在(1)的条件下,若k是满足条件的最小整数,求方程的根.

【答案】(1) k>﹣时,方程有两个不相等的实数根;(2) x10x2

【解析】

1)根据方程的系数结合根的判别式0,即可得出关于k的一元一次不等式,解之即可得出结论;

2)结合(1)的结论可得出k值,将其代入原方程,解之即可得出结论.

1)∵关于x的一元二次方程2x2﹣(4k+3x+2k2+k0有两个不相等的实数根,

∴△=[﹣(4k+3]24×2×2k2+k)=16k+90

解得:k>﹣

∴当k>﹣时,方程有两个不相等的实数根;

2)根据题意,得:k0

∴原方程为2x23x0,即x2x3)=0

解得:x10x2

∴方程的根为x10x2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线经过A(﹣4,0)、B(0,﹣4)、C(2,0)三点若点M为第三象限内抛物线上一动点,△AMB的面积为SS的最大值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的平面直角坐标系中,△OA1B1是边长为2的等边三角形,作△B2A2B1△OA1B1关于点B1成中心对称,再作△B2A3B3△B2A2B1关于点B2成中心对称,如此作下去,则△B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(

A. (4n﹣1,B. (2n﹣1,C. (4n+1,D. (2n+1,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一圆弧形桥拱的圆心为,拱桥的水面跨度米,桥拱到水面的最大高度米.求:

桥拱的半径;

现水面上涨后水面跨度为米,求水面上涨的高度为________米.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bxa0)经过原点O和点A20),B(﹣12)三点.

1)写出抛物线的对称轴和顶点坐标;

2)点(x1y1),(x2y2)在抛物线上,若x1x21,比较y1y2的大小,并说明理由;

3)点C与点B关于抛物线的对称轴对称,求直线AC的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,∠BAC60°AB6,将ABC绕点A逆时针方向旋转60°得到ABC,求线段BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a>0)x轴的正半轴交于AC两点(A在点C右侧),与y轴正半轴交于点B,连结BC,将BOC沿直线BC翻折,若点O恰好落在线段AB上,则称该抛物线为折点抛物线,下列抛物线是折点抛物线的是( )

A.B.

C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某新型高科技商品,每件的售价比进价多6元,5件的进价相当于4件的售价,每天可售出200件,经市场调查发现,如果每件商品涨价1元,每天就会少卖5件.

1)该商品的售价和进价分别是多少元?

2)设每天的销售利润为w元,每件商品涨价x元,则当售价为多少元时,该商品每天的销售利润最大,最大利润为多少元?

3)为增加销售利润,营销部推出了以下两种销售方案:方案一:每件商品涨价不超过8元;方案二:每件商品的利润至少为24元,请比较哪种方案的销售利润更高,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC内接于⊙O,直径DEAB于点F,交BC于点 MDE的延长线与AC的延长线交于点N,连接AM

1)求证:AMBM

2)若AMBMDE8,∠N15°,求BC的长.

查看答案和解析>>

同步练习册答案