【题目】如图,一垂直于地面的灯柱AB被一钢筋CD固定,CD与地面成45°夹角(∠CDB=45°),在C点上方2米处加固另一条钢线ED,ED与地面成53°夹角(∠EDB=53°),那么钢线ED的长度约为多少米?(结果精确到1米,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)
科目:初中数学 来源: 题型:
【题目】计算下列各题:
(1)3.587-(-5)+(-5)+(+7)-(+3)-(+1.587);
(2)(-1)5×{[-4÷(-2)2+(-1.25)×(-0.4)]÷(-)-32}.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形, 在同一条直线上,连结.
(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);
(2)证明: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将抛物线y=2x向右平移4个单位,再向上平移3个单位,得到的图象的表达式为( )
A. y=2(x-4)+3B. y=2(x+4)+3C. y=2(x-4)-3D. y=2(x+4)-3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一种“二十四点”的游戏,其游戏规则是这样的:任取四个1~13之间的自然数,将这四个数(每个数只用一次)进行加减乘除四则运算,使其结果等于24,例如对1,2,3,4可作如下运算:(1+2+3)×4=24[注意上述运算与4×(2+3+1)应视为相同方法的运算].
现有四个有理数3,4,-6,10,运用上述规则写出三种不同方法的运算,使其结果等于24,运算式如下:(1)________;(2)________;(3)________.另有四个数3,-5,7,-13,可通过运算式________,使其结果等于24.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探索研究.请解决下列问题:
(1)已知△ABC中,∠A=90°,∠B=67.5°,请画一条直线,把这个三角形分割成两个等腰三角形.(请你选用下面给出的备用图,并把所有不同的分割方法都画出来,图不够可以自己画.只需画图,不必说明理由,但要在图中标出相等两角的度数).
(2)已知等腰△ABC中,AB=AC,D为BC上一点,连接AD,若△ABD和△ACD都是等腰三角形,则∠B的度数为 (请画出示意图,并标明必要的角度).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.
(1)通过计算,判断与ACCD的大小关系;
(2)求∠ABD的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=﹣(x+3)2+2图象的开口方向、对称轴和顶点坐标分别为( )
A.向下,直线x=3,(3,2)
B.向下,直线x=﹣3,(3,2)
C.向上,直线x=﹣3,(3,2)
D.向下,直线x=﹣3,(﹣3,2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com