【题目】直角三角板ABC的直角顶点C在直线DE上,CF平分∠BCD.
(1)在图1中,若∠BCE=40°,求∠ACF的度数;
(2)在图1中,若∠BCE=α,直接写出∠ACF的度数(用含α的式子表示);
(3)将图1中的三角板ABC绕顶点C旋转至图2的位置,探究:写出∠ACF与∠BCE的度数之间的关系,并说明理由.
【答案】(1)∠ACF=20°;(2)∠ACF=α;(3)∠ACF=∠BCE.理由见解析.
【解析】试题分析:(1)由∠ACB=90°,∠BCE=40°,可得∠ACD,∠BCD的度数,再根据CF平分∠BCD,可得∠DCF的度数,继而可求得∠ACF=∠DCF﹣∠ACD=20°;
(2)由∠ACB=90°,∠BCE=α°,可得∠ACD=90°﹣α,∠BCD=180°﹣α,再根据CF平分∠BCD,从而可得∠DCF=90°﹣α,继而可得∠ACF=α;
(3)由点C在DE上,可得∠BCD=180°﹣∠BCE,再根据CF平分∠BCD,可得∠BCF=90°-∠BCE,再根据∠ACB=90°,从而有∠ACF=∠BCE.
试题解析:(1)如图1,∵∠ACB=90°,∠BCE=40°,
∴∠ACD=180°﹣90°﹣40°=50°,∠BCD=180°﹣40°=140°,
又CF平分∠BCD,
∴∠DCF=∠BCF=∠BCD=70°,
∴∠ACF=∠DCF﹣∠ACD=70°﹣50°=20°;
(2)如图1,∵∠ACB=90°,∠BCE=α°,
∴∠ACD=180°﹣90°﹣α°=90°﹣α,∠BCD=180°﹣α,
又CF平分∠BCD,
∴∠DCF=∠BCF=∠BCD=90°﹣α,
∴∠ACF=90°﹣α﹣90°+α=α;
(3)∠ACF=∠BCE.理由如下:
如图2,∵点C在DE上,
∴∠BCD=180°﹣∠BCE.
∵CF平分∠BCD,
∴∠BCF=∠BCD=(180°﹣∠BCE)=90°-∠BCE.
∵∠ACB=90°,
∴∠ACF=∠ACB﹣∠BCF=90°﹣(90°-∠BCE)=∠BCE.
即:∠ACF=∠BCE.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.
(1)求抛物线的函数表达式.
(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?
(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2017广东省深圳市)如图,抛物线经过点A(﹣1,0),B(4,0),交y轴于点C;
(1)求抛物线的解析式(用一般式表示);
(2)点D为y轴右侧抛物线上一点,是否存在点D使?若存在请直接给出点D坐标;若不存在,请说明理由;
(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校以“我最想去的社会实践地”为课题,开展了一次调查,从全校同学中随机抽取了部分同学进行调查,每位同学从“荪湖花海”、“保国寺”、“慈城古镇”、“绿色学校”中选取一项最想去的社会实践地,并将调查结果绘制成如下的统计图(部分信息未给出).
请根据统计图中信息,解答下列问题:
(1)该调查的样本容量为________,a=________%,b=________%,“荪湖花海”所对应扇形的圆心角度数为________度.
(2)补全条形统计图;
(3)若该校共有1600名学生,请估计全校最想去“绿色学校”的学生共有多少名?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC=5,cos∠ABC=,将△ABC绕点C顺时针旋转,得到△A1B1C.
(1)如图①,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;
(2)如图②,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,求线段EF1长度的最大值与最小值的差.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC平移,使点A变换为点A′,点B′、C′分别是B、C的对应点.
(1)请画出平移后的△A′B′C′,并求△A′B′C′的面积;
(2)若连接AA′,CC′,则这两条线段之间的关系是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.
(1)若抛物线过点C、A、A′,求此抛物线的解析式;
(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△OC′D的周长;
(3)点M是第一象限内抛物线上的一动点,问:点M在何处时;△AMA′的面积最大?最大面积是多少?并求出此时点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小刚同学动手剪了如图①所示,的正方形纸片与的长方形纸片若干块.
(1)小刚用1张1号、1张2号和2张3号纸片拼出一个新图形(如图②),根据这个图形的面积关系可以写出一个你所熟悉的乘法公式,这个乘法公式是 ;
(2)根据小刚用1张1号、2张2号和3张3号纸片拼成的长方形(如图③),6张纸片的面积等于所拼成大长方形的面积,将多项式因式分解,其结果是 ;
(3)动手操作,请你依照小刚的方法,利用拼图分解因式:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为实施“农村留守儿童关爱计划”,某校结全校各班留守儿童的人数情况进行了统计,发现各班留守儿童人数只有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅不完整的统计图:
(1)求该校平均每班有多少名留守儿童?并将该条形统计图补充完整;
(2)某爱心人士决定从只有2名留守儿童的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名留守儿童来自同一个班级的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com