精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=ax2+bx(a≠0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.

(1)求抛物线的函数表达式.

(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?

(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.

【答案】(1)抛物线的函数表达式为y=﹣x2+x;(2)当t=1时,矩形ABCD的周长有最大值,最大值为;(3)抛物线向右平移的距离是4个单位.

【解析】(1)由点E的坐标设抛物线的交点式,再把点D的坐标(2,4)代入计算可得;

(2)由抛物线的对称性得BE=OA=t,据此知AB=10-2t,再由x=tAD=-t2+t,根据矩形的周长公式列出函数解析式,配方成顶点式即可得;

(3)由t=2得出点A、B、C、D及对角线交点P的坐标,由直线GH平分矩形的面积知直线GH必过点P,根据ABCD知线段OD平移后得到的线段是GH,由线段OD的中点Q平移后的对应点是PPQOBD中位线,据此可得.

1)设抛物线解析式为y=ax(x-10),

∵当t=2时,AD=4,

∴点D的坐标为(2,4),

∴将点D坐标代入解析式得-16a=4,

解得:a=-

抛物线的函数表达式为y=-x2+x;

(2)由抛物线的对称性得BE=OA=t,

AB=10-2t,

x=t时,AD=-t2+t,

∴矩形ABCD的周长=2(AB+AD)

=2[(10-2t)+(-t2+t)]

=-t2+t+20

=-(t-1)2+

-<0,

∴当t=1时,矩形ABCD的周长有最大值,最大值为

(3)如图,

t=2时,点A、B、C、D的坐标分别为(2,0)、(8,0)、(8,4)、(2,4),

∴矩形ABCD对角线的交点P的坐标为(5,2),

当平移后的抛物线过点A时,点H的坐标为(4,4),此时GH不能将矩形面积平分;

当平移后的抛物线过点C时,点G的坐标为(6,0),此时GH也不能将矩形面积平分;

∴当G、H中有一点落在线段ADBC上时,直线GH不可能将矩形的面积平分,

当点G、H分别落在线段AB、DC上时,直线GH过点P必平分矩形ABCD的面积,

ABCD,

∴线段OD平移后得到的线段GH,

∴线段OD的中点Q平移后的对应点是P,

OBD中,PQ是中位线,

PQ=OB=4,

所以抛物线向右平移的距离是4个单位.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知数轴上点ABC所表示的数分别是﹣2+8xAC6

1)画出数轴并标出点AB的位置.

2)确定x的值为   

3)若点MN分别是ABAC的中点,求线段MN的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为1,AC,BD是对角线.将DCB绕着点D顺时针旋转45°得到DGH,HGAB于点E,连接DEAC于点F,连接FG.则下列结论:

①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°BC+FG=1.5其中正确的结论是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点OAC边上一动点,过点OBC的平行线交∠ACB的角平分线于点E,交∠ACB的外角平分线于点F

(1)求证:EO=FO

(2)当点O运动到何处时,四边形CEAF是矩形?请证明你的结论。

(3)在第(2)问的结论下,若AE=3EC=4AB=12BC=13,请求出凹四边形ABCE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC在直角坐标系中.

1)若把△ABC向上平移2个单位,再向左平移1个单位得到△A1B1C1,画出△A1B1C1,并写出点A1B1C1的坐标;

2)求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】汽车从甲地到乙地用去油箱中汽油的,由乙地到丙地用去剩下汽油的,油箱中还剩6升汽油.(假设甲地、乙地、丙地、丁地在同一直线上,且按上述顺序分布).

1)求油箱中原有汽油多少升?

2)若甲、乙两地相距22千米,则乙、丙两地相距多远?(汽车在行驶过程中行驶的路程与耗油量成正比).

3)在(2)的条件下,若丁地距丙地10千米,问汽车在不加油的情况下,能否去丁地,然后再沿原路返回到甲地?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.

类型

频数

频率

A

30

B

18

0.15

C

0.40

D

(1)学生共________人, ________, ________;

(2)补全条形统计图;

(3)若该校共有2000人,骑共享单车的有________人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,射线OA的方向是北偏东20°,射线OB的方向是北偏西40°ODOB的反向延长线,OC是∠AOD的平分线。

1)求∠DOC的度数;

2)求出射线OC的方向。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直角三角板ABC的直角顶点C在直线DE上,CF平分∠BCD

1)在图1中,若∠BCE=40°,求∠ACF的度数;

2)在图1中,若∠BCE=α,直接写出∠ACF的度数(用含α的式子表示);

3)将图1中的三角板ABC绕顶点C旋转至图2的位置,探究:写出∠ACF与∠BCE的度数之间的关系,并说明理由.

查看答案和解析>>

同步练习册答案