【题目】如图,在△ABC中,CD是AB边上高,若AD=16,CD=12,BD=9.
(1)求△ABC的周长;
(2)判断△ABC的形状并加以证明.
【答案】(1)△ABC的周长为60;
(2)△ABC是直角三角形,证明见解析.
【解析】(1)利用勾股定理可求出AC,BC的长,即可求出△ABC的周长;
(2)利用勾股定理的逆定理即可证明.
【解答】解:(1)∵CD是AB边上高,
∴∠CDA=∠CDB=90°,
∴AC==20,
BC==15,
∵AB=AD+BD=25,
∴△ABC的周长=AB+BC+AC=25+20+15=60;
(2)△ABC是直角三角形,理由如下:
202+152=252,
即AC2+BC2=AB2,
∴△ABC是直角三角形.
“点睛”本题主要考查了勾股定理以及其逆定理的运用;熟练掌握勾股定理与勾股定理的逆定理是解决问题的关键.
科目:初中数学 来源: 题型:
【题目】如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.
(1)求证:△ABQ≌△CAP;
(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.
(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,直接写出它的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】a,b,c为常数,且(a-c)2>a2+c2,则关于x的方程ax2+bx+c=0根的情况是( )
A. 有两个相等的实数根
B. 有两个不相等的实数根
C. 无实数根
D. 有一根为0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某运动员在东西走向的公路上练习跑步,跑步情况记录如下:(向东为正,单位:米) 1000,﹣1200,1100,﹣800,1400,该运动员共跑的路程为________米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若直线y=3x+m经过第一、三、四象限,则抛物线y=(x-m)2+1的顶点必在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com