精英家教网 > 初中数学 > 题目详情

如图,△ABC中,AB=AC,∠A=36°,CD是角平分线,则△DBC的面积与△ABC面积的比值是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:根据等腰三角形的两个底角相等和三角形的内角和定理,可以求得∠ABC=∠ACB=72°,根据角平分线定义,可得∠BCD=∠ACD=36°;根据两角对应相等,得△DBC∽△BCA,则相似三角形的面积比是相似比的平方.设AB=x,BC=y,根据等腰三角形的性质,则AD=CD=BC=y,则BD=x-y.根据相似三角形的性质求得y:x的值即可.
解答:设AB=x,BC=y.
∵△ABC中,AB=AC,∠A=36°,
∴∠ABC=∠ACB=72°.
∵CD是角平分线,
∴∠BCD=∠ACD=36°.
∴AD=CD=BC=y,
∴BD=x-y.
∵∠BCD=∠A=36°,∠B=∠ACB=72°,
∴△DBC∽△ABC.


x2-xy-y2=0,
x=y(负值舍去).
=
∴△DBC的面积与△ABC面积的比值是=
故选C.
点评:此题首先根据等腰三角形的性质、相似三角形的判定和性质,得到两个相似三角形的相似比,再进一步求得它们的面积比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

26、已知:如图,△ABC中,点D在AC的延长线上,CE是∠DCB的角平分线,且CE∥AB.
求证:∠A=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、已知:如图,△ABC中,∠BAC=60°,D、E两点在直线BC上,连接AD、AE.
求:∠1+∠2+∠3+∠4.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,△ABC中,AD⊥BC于D,DN⊥AC于N,DM⊥AB于M
求证:∠ANM=∠B.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,△ABC中,∠BAC=120°,AD⊥BC于D,且AB+BD=DC,则∠C的大小是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知,如图,△ABC中,点D在BC上,且∠1=∠C,∠2=2∠3,∠BAC=70°.
(1)求∠2的度数;
(2)若画∠DAC的平分线AE交BC于点E,则AE与BC有什么位置关系,请说明理由.

查看答案和解析>>

同步练习册答案