【题目】如图,在梯形ABCD中,,,,,点E为AB边上一点,且.点F是BC边上的一个动点(与点B、点C不重合),点G在射线CD上,且.设BF的长为x,CG的长为y.
(1)当点G在线段DC上时,求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)当以点B为圆心,BF长为半径的⊙B与以点C为圆心,CG长为半径的⊙C相切时,求线段BF的长;
(3)当为等腰三角形时,直接写出线段BF的长.
【答案】(1),;(2)当⊙B与⊙C相切时,线段BF的长为:2或4或6;(3)当△FCG为等腰三角形时,线段BF的长为 或2或.
【解析】
(1)根据梯形的性质得到∠B=∠C,进行证明∠GFC=∠FEB,得到△EBF∽△FCG,根据相似三角形的性质得到,即可求出y与x之间的函数关系式.
(2)分两种情况:①当⊙B与⊙C外切时, BF+CG=BC;②当⊙B与⊙C内切时, CG-BF=BC进行讨论即可.
(3)分三种情况进行讨论即可.
(1)∵梯形ABCD中,AD∥BC,AB=DC
∴∠B=∠C
∵∠EFC=∠B+∠BEF==∠EFG+∠GFC,∠EFG=∠B
∴∠GFC=∠FEB
∴△EBF∽△FCG
∴,∴
∴
自变量x的取值范围为:
(2)当,都有
,
①当⊙B与⊙C外切时, BF+CG=BC
∴,解得x=2或x=12(舍去)
②当⊙B与⊙C内切时, CG-BF=BC
∴,解得x=4或x=6
综上所述,当⊙B与⊙C相切时,线段BF的长为:2或4或6
(3)当△FCG为等腰三角形时,线段BF的长为: 或2或
科目:初中数学 来源: 题型:
【题目】在平行四边形 ABCD 中,过点 D 作 DE⊥AB 于点 E,点 F 在 CD 上,CF =AE,连接 BF,AF.
(1)求证:四边形 BFDE 是矩形;
(2)若 AF 平分∠BAD,交DE与H点,且 AB=3AE,BF=6,求AH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形是正方形,点的坐标为,弧是以点为圆心,为半径的圆弧;弧是以点为圆心,为半径的圆弧,弧是以点为圆心,为半径的圆弧,弧是以点为圆心,为半径的圆弧.继续以点,,,为圆心按上述作法得到的曲线…称为正方形的“渐开线”,则点的坐标是__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC内接于⊙O,过点C作BC的垂线交⊙O于D,点E在BC的延长线上,且∠DEC=∠BAC.
(1)求证:DE是⊙O的切线;
(2)若AC∥DE,当AB=8,CE=2时,求⊙O直径的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB和抛物线的交点是A(0,-3),B(5,9),已知抛物线的顶点D的横坐标是2.
(1)求抛物线的解析式及顶点坐标;
(2)在轴上是否存在一点C,与A,B组成等腰三角形?若存在,求出点C的坐标,若不存在,请说明理由;
(3)在直线AB的下方抛物线上找一点P,连接PA,PB使得△PAB的面积最大,并求出这个最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=4.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tan∠ODA=( )
A. B. C. D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买A,B两种笔记本作为奖品,已知A,B两种每本分别为12元和20元,设购入A种x本,B种y本.
(1)求y关于x的函数表达式.
(2)若购进A种的数量不少于B种的数量.
①求至少购进A种多少本?
②根据①的购买,发现B种太多,在费用不变的情况下把一部分B种调换成另一种C,调换后C种的数量多于B种的数量,已知C种每本8元,则调换后C种至少有______本(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:抛物线,经过点A(-1,-2),B(0,1).
(1)求抛物线的关系式及顶点P的坐标.
(2)若点B′与点B关于x轴对称,把(1)中的抛物线向左平移m个单位,平移后的抛物线经过点B′,设此时抛物线顶点为点P′.
①求∠P′B B′的大小.
②把线段P′B′以点B′为旋转中心顺时针旋转120°,点P′落在点M处,设点N在(1)中的抛物线上,当△MN B′的面积等于6时,求点N的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com