精英家教网 > 初中数学 > 题目详情

【题目】已知:抛物线,经过点A(-1,-2)B(0,1).

1)求抛物线的关系式及顶点P的坐标.

2)若点B′与点B关于x轴对称,把(1)中的抛物线向左平移m个单位,平移后的抛物线经过点B′,设此时抛物线顶点为点P′.

①求∠P′B B′的大小.

②把线段P′B′以点B′为旋转中心顺时针旋转120°,点P′落在点M处,设点N在(1)中的抛物线上,当△MN B′的面积等于6时,求点N的坐标.

【答案】1,顶点坐标;(2)①,②当时,点的坐标为.

【解析】

1)把点A-1-2B0,1)代入即可求出解析式;(2)①设抛物线平移后为,代入点B’(0,-1)即可求出m,得出顶点坐标

,连结P’B’,作P’Hy轴,垂足为,得,HB=1P’B=2

求出, ,故可得的度数

②根据题意作出图形,根据旋转的性质与,解得三角形的高;故设分别代入即可求出N的坐标.

1)把点A-1-2B0,1)代入解得

∴抛物线的关系式为:

y=-(x-1)2

∴顶点坐标为.

2)①设抛物线平移后为,代入点B’(0,-1)得,-1=-(m-1)2+2解得(舍去);

,得顶点

连结P’B’,作P’Hy轴,垂足为,得,HB=1P’B==2

,

,

.

②∵,,

;

∵线段以点为旋转中心顺时针旋转,点落在点;

,

轴,;

边上的高为,得:,解得

∴设分别代入解得:方程无实数根舍去,

∴综上所述:当时,点的坐标为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在梯形ABCD中,,点EAB边上一点,且.点FBC边上的一个动点(与点B、点C不重合),点G在射线CD上,且.设BF的长为xCG的长为y

1)当点G在线段DC上时,求yx之间的函数关系式,并写出自变量x的取值范围;

2)当以点B为圆心,BF长为半径的⊙B与以点C为圆心,CG长为半径的⊙C相切时,求线段BF的长;

3)当为等腰三角形时,直接写出线段BF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形AOBC是正方形,点C的坐标是(40).

(Ⅰ)正方形AOBC的边长为   ,点A的坐标是   

(Ⅱ)将正方形AOBC绕点O顺时针旋转45°,点ABC旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;

(Ⅲ)动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC为直角三角形,∠C=90°,BC=2cm,A=30°,四边形DEFG为矩形,DE=2cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.RtABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设RtABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2xs之间函数关系的大致图象是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的图象经过点A(3,0),B(2,﹣3),并且以x=1为对称轴.

(1)求此函数的解析式;

(2)作出二次函数的大致图象

(3)在对称轴x=1上是否存在一点P,使△PABPA=PB?若存在,求出P点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,以BC为直径的⊙OAC于点E,过点EAB的垂线交AB于点F,交CB的延长线于点G,且∠ABG=2C.

(1)求证:EG是⊙O的切线;

(2)若tanC=,AC=8,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角角坐标系中,直线与双曲线交于AC两点,ABOAx轴于点B,且OA=AB

1)求双曲线的解析式;

2)求点C的坐标,并直接写出关于x的不等式解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解:如果两个正数ab,即a0b0,有下面的不等式:,当且仅当ab时取到等号我们把叫做正数ab的算术平均数,把叫做正数ab的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最值问题的有力工具.

初步探究:(1)已知x0,求函数yx+的最小值.

问题迁移:(2)学校准备以围墙一面为斜边,用栅栏围成一个面积为100m2的直角三角形,作为英语角,直角三角形的两直角边各为多少时,所用栅栏最短?

创新应用:(3)如图,在直角坐标系中,直线AB经点P34),与坐标轴正半轴相交于AB两点,当△AOB的面积最小时,求△AOB的内切圆的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下面是小明设计的作三角形的高线的尺规作图过程.

已知:ABC

求作:BC边上的高线.

作法:如图,

①以点C为圆心,CA为半径画弧;

②以点B为圆心,BA为半径画弧,两弧相交于点D

③连接AD,交BC的延长线于点E

所以线段AE就是所求作的BC边上的高线.

根据小明设计的尺规作图过程,

1)使用直尺和圆规,补全图形;(保留作图痕迹)

2)完成下面证明.

证明:∵CA=CD

∴点C在线段AD的垂直平分线上( (填推理的依据).

=

∴点B在线段AD的垂直平分线上.

BC是线段AD的垂直平分线.

ADBC

AE就是BC边上的高线.

查看答案和解析>>

同步练习册答案