【题目】已知:抛物线,经过点A(-1,-2),B(0,1).
(1)求抛物线的关系式及顶点P的坐标.
(2)若点B′与点B关于x轴对称,把(1)中的抛物线向左平移m个单位,平移后的抛物线经过点B′,设此时抛物线顶点为点P′.
①求∠P′B B′的大小.
②把线段P′B′以点B′为旋转中心顺时针旋转120°,点P′落在点M处,设点N在(1)中的抛物线上,当△MN B′的面积等于6时,求点N的坐标.
【答案】(1),顶点坐标;(2)①,②当时,点的坐标为或.
【解析】
(1)把点A(-1,-2)B(0,1)代入即可求出解析式;(2)①设抛物线平移后为,代入点B’(0,-1)即可求出m,得出顶点坐标
,连结,P’B’,作P’H⊥y轴,垂足为,得,HB=1,P’B=2
求出, 得,故可得的度数
②根据题意作出图形,根据旋转的性质与,解得三角形的高;故设或分别代入即可求出N的坐标.
(1)把点A(-1,-2)B(0,1)代入得解得
∴抛物线的关系式为:
得y=-(x-1)2;
∴顶点坐标为.
(2)①设抛物线平移后为,代入点B’(0,-1)得,-1=-(m-1)2+2解得,(舍去);
∴,得顶点
连结,P’B’,作P’H⊥y轴,垂足为,得,HB=1,P’B==2
∵,
∴,
∴.
②∵,即,
∴;
∵线段以点为旋转中心顺时针旋转,点落在点处;
∴,
∴轴,;
设在边上的高为,得:,解得;
∴设或分别代入得解得:或∴或,方程无实数根舍去,
∴综上所述:当时,点的坐标为或.
科目:初中数学 来源: 题型:
【题目】如图,在梯形ABCD中,,,,,点E为AB边上一点,且.点F是BC边上的一个动点(与点B、点C不重合),点G在射线CD上,且.设BF的长为x,CG的长为y.
(1)当点G在线段DC上时,求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)当以点B为圆心,BF长为半径的⊙B与以点C为圆心,CG长为半径的⊙C相切时,求线段BF的长;
(3)当为等腰三角形时,直接写出线段BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形AOBC是正方形,点C的坐标是(4,0).
(Ⅰ)正方形AOBC的边长为 ,点A的坐标是 .
(Ⅱ)将正方形AOBC绕点O顺时针旋转45°,点A,B,C旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;
(Ⅲ)动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=2cm,EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a≠0)的图象经过点A(3,0),B(2,﹣3),并且以x=1为对称轴.
(1)求此函数的解析式;
(2)作出二次函数的大致图象;
(3)在对称轴x=1上是否存在一点P,使△PAB中PA=PB?若存在,求出P点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,以BC为直径的⊙O交AC于点E,过点E作AB的垂线交AB于点F,交CB的延长线于点G,且∠ABG=2∠C.
(1)求证:EG是⊙O的切线;
(2)若tanC=,AC=8,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角角坐标系中,直线与双曲线交于A,C两点,AB⊥OA交x轴于点B,且OA=AB.
(1)求双曲线的解析式;
(2)求点C的坐标,并直接写出关于x的不等式解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:如果两个正数a,b,即a>0,b>0,有下面的不等式:,当且仅当a=b时取到等号我们把叫做正数a,b的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最值问题的有力工具.
初步探究:(1)已知x>0,求函数y=x+的最小值.
问题迁移:(2)学校准备以围墙一面为斜边,用栅栏围成一个面积为100m2的直角三角形,作为英语角,直角三角形的两直角边各为多少时,所用栅栏最短?
创新应用:(3)如图,在直角坐标系中,直线AB经点P(3,4),与坐标轴正半轴相交于A,B两点,当△AOB的面积最小时,求△AOB的内切圆的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是小明设计的“作三角形的高线”的尺规作图过程.
已知:△ABC.
求作:BC边上的高线.
作法:如图,
①以点C为圆心,CA为半径画弧;
②以点B为圆心,BA为半径画弧,两弧相交于点D;
③连接AD,交BC的延长线于点E.
所以线段AE就是所求作的BC边上的高线.
根据小明设计的尺规作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面证明.
证明:∵CA=CD,
∴点C在线段AD的垂直平分线上( ) (填推理的依据).
∵ = ,
∴点B在线段AD的垂直平分线上.
∴ BC是线段AD的垂直平分线.
∴AD⊥BC.
∴AE就是BC边上的高线.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com