精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形AOBC是正方形,点C的坐标是(40).

(Ⅰ)正方形AOBC的边长为   ,点A的坐标是   

(Ⅱ)将正方形AOBC绕点O顺时针旋转45°,点ABC旋转后的对应点为A′,B′,C′,求点A′的坐标及旋转后的正方形与原正方形的重叠部分的面积;

(Ⅲ)动点P从点O出发,沿折线OACB方向以1个单位/秒的速度匀速运动,同时,另一动点Q从点O出发,沿折线OBCA方向以2个单位/秒的速度匀速运动,运动时间为t秒,当它们相遇时同时停止运动,当△OPQ为等腰三角形时,求出t的值(直接写出结果即可).

【答案】14;(2)旋转后的正方形与原正方形的重叠部分的面积为;(3.

【解析】

1)连接AB,根据OCA为等腰三角形可得AD=OD的长,从而得出点A的坐标,则得出正方形AOBC的面积;
2)根据旋转的性质可得OA′的长,从而得出A′CA′E,再求出面积即可;
3)根据PQ点在不同的线段上运动情况,可分为三种列式①当点PQ分别在OAOB时,②当点POA上,点QBC上时,③当点PQAC上时,可方程得出t

解:(1)连接AB,与OC交于点D

四边形是正方形,
OCA为等腰Rt

AD=OD=OC=2
∴点A的坐标为.

4.

2)如图

四边形是正方形,

.

将正方形绕点顺时针旋转

落在轴上.

.

的坐标为.

.

四边形是正方形,

.

.

.

.

.

∴旋转后的正方形与原正方形的重叠部分的面积为.

3)设t秒后两点相遇,3t=16,∴t=

①当点PQ分别在OAOB时,

,OP=tOQ=2t

不能为等腰三角形

②当点POA上,点QBC上时如图2

OQ=QPQMOP的垂直平分线,
OP=2OM=2BQOP=tBQ=2t-4
t=22t-4),
解得:t=

③当点PQAC上时,

不能为等腰三角形

综上所述,当是等腰三角形

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,四边形是正方形,点的坐标为,弧是以点为圆心,为半径的圆弧;弧是以点为圆心,为半径的圆弧,弧是以点为圆心,为半径的圆弧,弧是以点为圆心,为半径的圆弧.继续以点为圆心按上述作法得到的曲线称为正方形的渐开线,则点的坐标是__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C90°,AC6BC8,⊙O为△ABC的内切圆,点D是斜边AB的中点,则tanODA=(  )

A. B. C. D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级举行英语演讲比赛,准备用1200元钱(全部用完)购买AB两种笔记本作为奖品,已知AB两种每本分别为12元和20元,设购入Ax本,By本.

1)求y关于x的函数表达式.

2)若购进A种的数量不少于B种的数量.

①求至少购进A种多少本?

②根据①的购买,发现B种太多,在费用不变的情况下把一部分B种调换成另一种C,调换后C种的数量多于B种的数量,已知C种每本8元,则调换后C种至少有______本(直接写出答案)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点分别在正三角形的三边上,且也是正三角形.若的边长为的边长为,则的内切圆半径为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.

(1)求证:BD是⊙O的切线.

(2)若AB=,E是半圆上一动点,连接AE,AD,DE.

填空:

①当的长度是____________时,四边形ABDE是菱形;

②当的长度是____________时,△ADE是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠BAC=90°,∠C=30°,以边上AC上一点O为圆心,OA为半径作⊙O,⊙O恰好经过边BC的中点D,并与边AC相交于另一点F.

(1)求证:BD是⊙O的切线.

(2)若AB=,E是半圆上一动点,连接AE,AD,DE.

填空:

①当的长度是____________时,四边形ABDE是菱形;

②当的长度是____________时,△ADE是直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:抛物线,经过点A(-1,-2)B(0,1).

1)求抛物线的关系式及顶点P的坐标.

2)若点B′与点B关于x轴对称,把(1)中的抛物线向左平移m个单位,平移后的抛物线经过点B′,设此时抛物线顶点为点P′.

①求∠P′B B′的大小.

②把线段P′B′以点B′为旋转中心顺时针旋转120°,点P′落在点M处,设点N在(1)中的抛物线上,当△MN B′的面积等于6时,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线与直线交于点,则______

【答案】-1

【解析】

将点A的坐标代入两直线解析式得出关于mb的方程组,解之可得.

解:由题意知

解得

故答案为:

【点睛】

本题主要考查两直线相交或平行问题,解题的关键是掌握两直线的交点坐标必定同时满足两个直线解析式.

型】填空
束】
11

【题目】如图,长方形纸片ABCD中,AB=4BC=6,将△ABC沿AC折叠,使点B落在点E处,CEAD于点F,则△AFC的面积等于___

查看答案和解析>>

同步练习册答案