精英家教网 > 初中数学 > 题目详情

【题目】如图,在中,,,,,的平分线.若,分别是上的动点,则的最小值是__________

【答案】

【解析】

过点CCMABAB于点M,交AD于点P,过点PPQAC于点Q,由AD是∠BAC的平分线.得出PQPM,这时PCPQ有最小值,即CM的长度,运用勾股定理求出AB,再运用SABCABCMACBC,得出CM的值,即PCPQ的最小值.

如图,过点CCMABAB于点M,交AD于点P,过点PPQAC于点Q

AD是∠BAC的平分线.

PQPM,这时PCPQ有最小值,即CM的长度,

AC6AB10,∠ACB90°,BC8SABCABCMACBC

CM

PCPQ的最小值为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.动点P从点A开始沿折线AC-CB-BA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5个单位.直线l从与AC重合的位置开始,以每秒个单位的速度沿CB方向移动,移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动.

(1)当t=5秒时,点P走过的路径长为_________;当t=_________秒时,点P与点E重合;

(2)当点P在AC边上运动时,连结PE,并过点E作AB的垂线,垂足为H. 若以C、P、E为顶点的三角形与△EFH相似,试求线段EH的值;

(3)当点P在折线AC-CB-BA上运动时,作点P关于直线EF的对称点Q.在运动过程中,若形成的四边形PEQF为菱形,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:abc<0;9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2<a<﹣其中正确结论有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知MB=ND,∠MBA=NDC,下列哪个条件不能判定ABM≌△CDN

A.AM=CNB.AB=CD C.AMCN D.M=N

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,过点C的直线MNABDAB边上一点,过点DDEBC,交直线MNE,垂足为F,连接CDBE.

(1)求证:CEAD

(2)当DAB中点时,四边形BECD是什么特殊四边形?说明你的理由;

(3)若DAB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CDAB于点E,点G在直径DF的延长线上,∠D=G=30°.

(1)求证:CG是⊙O的切线 (2)若CD=6,求GF的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,直线CD与⊙O相切于点C,且与AB的延长线交于点E.点C是弧BF的中点.

(1)求证:ADCD

(2)若∠CAD=30°.⊙O的半径为3,一只蚂蚁从点B出发,沿着BE--EC--CB爬回至点B,求蚂蚁爬过的路程(π≈3.14,≈1.73,结果保留一位小数.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角扳的一边交CD于点F.另一边交CB的延长线于点G

1)求证:EF=EG

2)如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:

3)如图3,将(2)中的正方形ABCD”改为矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=aBC=b,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学校举行图书节义卖活动,将所售款项捐给其他贫困学生.在这次义卖活动中,某班级售书情况如表:

售价

3

4

5

6

数目

14

11

10

15

下列说法正确的是( )

A. 该班级所售图书的总收入是226

B. 在该班级所售图书价格组成的一组数据中,中位数是4

C. 在该班级所售图书价格组成的一纽数据中,众数是15

D. 在该班级所售图书价格组成的一组数据中,方差是2

查看答案和解析>>

同步练习册答案