【题目】如图,小明同学在点P处测得教学楼A位于北偏东60°方向,办公楼B位于南偏东45°方向.小明沿正东方向前进60米到达C处,此时测得教学楼A恰好位于正北方向.办公楼B正好位于正南方向.求教学楼A与办公楼B之间的距离 .
【答案】(60+20 )米
【解析】解:由题意可知:
∠ACP=∠BCP=90°,∠APC=30°,∠BPC=45°.
在Rt△BPC中,
∵∠BCP=90°,∠B=∠BPC=45°,
∴BC=PC=60.
在Rt△ACP中,
∵∠ACP=90°,∠APC=30°,
tan30°= ,
∴AC=PCtan30°=tan30°×60=60× =20 (米).
∴AB=AC+BC=60+20 (米).
答:教学楼A与办公楼B之间的距离是(60+20 )米.
故答案是:(60+20 )米.
解直角三角形的基本方法就是把特殊角放在直角三角形中,利用边角关系BC=PC=60,AC=PCtan30°,求出AB.
科目:初中数学 来源: 题型:
【题目】已知:A(0,1),B(2,0),C(4,3)
(1)在直角坐标系中描出各点,画出△ABC.
(2)求△ABC的面积;
(3)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料,解答下面的问题:
我们知道方程有无数个解,但在实际问题中往往只需求出其正整数解.
例:由,得:( 、为正整数).要使为正整数,则为正整数,可知: 为3的倍数,从而,代入.所以的正整数解为.
问题:
(1)请你直接写出方程=8的正整数解 .
(2)若为自然数,则满足条件的正整数的值有( )
A.3个 B.4个 C.5个 D.6个
(3)关于, 的二元一次方程组的解是正整数,求整数的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AC=BC,∠ABC=45°,点D为BC的中点,CE⊥AD于点E,其延长线交AB于点F,连接DF.求证:∠ADC=∠BDF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠CAB=∠CBA,过点A向右作AD∥BC,点E是射线AD上的一个动点,∠ACE的平分线交BA的延长线于点F.
(1)若∠ACB=40°,∠ACE=38°,求∠F的度数;
(2)在动点E运动的过程中,的值是否发生变化?若不变,求它的值;若变化,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究
问题情境:如图1,在△ABC中,AB=AC,点D,E分别是边AB,AC上的点,且AD=AE,连接DE,易知BD=CE.将△ADE绕点A顺时针旋转角度α(0°<α<360°),连接BD,CE,得到图2.
(1)变式探究:如图2,若0°<α<90°,则BD=CE的结论还成立吗?若成立,请证明;若不成立,请说明理由;
(2)拓展延伸:若图1中的∠BAC=120°,其余条件不变,请解答下列问题:
从A,B两题中任选一题作答我选择 题
A.①在图1中,若AB=10,求BC的长;
②如图3,在△ADE绕点A顺时针旋转的过程中,当DE的延长线经过点C时,请直接写出线段AD,BD,CD之间的等量关系;
B.①在图1中,试探究BC与AB的数量关系,并说明理由;
②在△ADE绕点A顺时针旋转的过程中,当点D,E,C三点在同一条直线上时,请借助备用图探究线段AD,BD,CD之间的等量关系,并直接写出结果.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一个角的两边与另一个角的两边分别平行,请结合图,探索这两个角之间的关系,并说明理由.
(1)如图①,AB∥CD,BE∥DF,∠1与∠2的关系是 ;
证明:
(2)如图②,AB∥CD,BE∥DF,∠1与∠2的关系是 ;
证明:
(3)经过上述证明,我们可得出结论,如果一个角的两边与另一个角的两边分别平行,那么这两个角 ;
(4)若这两个角的两边分别平行,且一个角比另一个角的3倍少60°,则这两个角分别是多少度?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com