精英家教网 > 初中数学 > 题目详情
(1997•重庆)如图.若△ABC的BC边上的高为AH,BC长为30cm,DE∥BC,以DE为直径的半圆与BC切于F,若此半圆的面积是18πcm2,则AH=
10
10
cm.
分析:首先连接OF,由此半圆的面积是18πcm2,即可求得此半圆的半径,又由DE∥BC,易证得△ADE∽△ABC,然后由相似三角形对应高的比等于相似比,求得答案.
解答:解:连接OF,
∵以DE为直径的半圆与BC切于F,
∴OF⊥BC,
设半圆的半径长为xcm,
∵此半圆的面积是18πcm2
1
2
πx2=18π,
解得:x=6,
∵DE∥BC,
∴△ADE∽△ABC,
∵△ABC的BC边上的高为AH,
∴AM是△ADE的高,
DE
BC
=
AM
AH

∵DE=2x=12cm,AM=AH-x=AH-6,
12
30
=
AH-6
AH

解得:AH=10cm.
故答案为:10.
点评:此题考查了切线的性质以及相似三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1997•重庆)如图.△ABC中,AB=AC,∠A=40°,∠ABC的平分线交AC于D,则∠BDC=
75
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•重庆)如图,PD切⊙O于A,
AB
=2
BC
,∠CAP=120°,则∠DAB=
40
40
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•重庆)如图.两个同心圆,小圆的切线被大圆截得的部分为AB,两圆所围成的圆环面积是9π,则AB=
6
6

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•重庆)如图,Rt△ABC中,∠BAC=90°,过顶点A的直线DE∥BC,∠ABC,∠ACB的平分线分别交DE于E、D,若AC=6,BC=10,则DE=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•重庆)如图,以⊙O上一点O1为圆心作圆和⊙O相交于A,B两点,过A作直线CD交⊙O于C,交⊙O1于D.CB交⊙O1于E,AB与CO交于F.
求证:(1)AC•BC=CF2+AF•BF;
      (2)∠CDB=∠CBD.

查看答案和解析>>

同步练习册答案