精英家教网 > 初中数学 > 题目详情

【题目】已知:在四边形ABCD中,对角线AC、BD相交于点E,且ACBD,作BFCD,垂足为点F,BFAC交于点C,BGE=ADE.

(1)如图1,求证:AD=CD;

(2)如图2,BHABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于ADE面积的2倍.

【答案】(1)证明见解析;(2)ACD、ABE、BCE、BHG.

【解析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;

(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.

(1)∵∠BGE=∠ADE,∠BGE=∠CGF,

∴∠ADE=∠CGF,

∵AC⊥BD、BF⊥CD,

∴∠ADE+∠DAE=∠CGF+∠GCF,

∴∠DAE=∠GCF,

∴AD=CD;

(2)设DE=a,

则AE=2DE=2a,EG=DE=a,

∴S△ADE=AE×DE=×2a×a=a2

∵BH是△ABE的中线,

∴AH=HE=a,

∵AD=CD、AC⊥BD,

∴CE=AE=2a,

则S△ADC=ACDE=(2a+2a)a=2a2=2S△ADE

在△ADE和△BGE中,

∴△ADE≌△BGE(ASA),

∴BE=AE=2a,

∴S△ABE=AEBE=(2a)2a=2a2

S△ACE=CEBE=(2a)2a=2a2

S△BHG=HGBE=(a+a)2a=2a2

综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于点Q.

(1)如图①,当点Q在DC边上时,猜想并写出PB与PQ所满足的数量关系,并加以证明;

(2)如图②,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点BFCE在一条直线上,ACDFBFCE,那么添加下列一个条件后,仍无法判断△ABC≌△DEF的是(  )

A. A=∠D=90° B. BCA=∠EFD C. B=∠E D. ABDE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】矩形一个角的平分线分矩形一边为1cm和3cm两部分,则这个矩形的面积为cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中,是轴对称图形,不是中心对称图形的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ADBC,∠A=∠C50°,线段AD上从左到右依次有两点EF(不与AD重合)

1ABCD是什么位置关系,并说明理由;

2)观察比较∠1、∠2、∠3的大小,并说明你的结论的正确性;

3)若∠FBD:∠CBD14BE平分∠ABF,且∠1=∠BDC,求∠FBD的度数,判断BEAD是何种位置关系?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列图形中,是轴对称图形,不是中心对称图形的是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】结合图形填空:已知:如图.求证:

证明:∵(已知),

),

(等量代换),

(同位角相等,两直线平行),

).

(已知),

(等量代换),

),

).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作: 将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是(

A.1.4
B.1.1
C.0.8
D.0.5

查看答案和解析>>

同步练习册答案